These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15924302)

  • 1. Oxidative and hydrolytic stability of a novel acrylic terpolymer for biomedical applications.
    Veleva AN; Khan SA; Cooper SL
    J Biomed Mater Res A; 2005 Jul; 74(1):117-23. PubMed ID: 15924302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-mechanical analysis of a compliant poly(carbonate-urea)urethane after exposure to hydrolytic, oxidative, peroxidative and biological solutions.
    Salacinski HJ; Odlyha M; Hamilton G; Seifalian AM
    Biomaterials; 2002 May; 23(10):2231-40. PubMed ID: 11962664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexural strength and moduli of hypoallergenic denture base materials.
    Pfeiffer P; Rolleke C; Sherif L
    J Prosthet Dent; 2005 Apr; 93(4):372-7. PubMed ID: 15798688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of acrylic terpolymers with RGD peptides for biomedical applications.
    Fussell GW; Cooper SL
    Biomaterials; 2004 Jul; 25(15):2971-8. PubMed ID: 14967529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on blood compatibility of terpolymers composed of methyl methacrylate, methoxypolyethyleneglycol methacrylate, and dimethylsiloxane methacrylate.
    Okamoto H; Osawa H; Nakashima S; Takahashi S; Kasemura T; Nozawa Y
    J Biomater Sci Polym Ed; 1998; 9(9):943-59. PubMed ID: 9747987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress.
    Salacinski HJ; Tai NR; Carson RJ; Edwards A; Hamilton G; Seifalian AM
    J Biomed Mater Res; 2002 Feb; 59(2):207-18. PubMed ID: 11745555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide surface modification of P(HEMA-co-MMA)-b-PIB-b-P(HEMA-co-MMA) block copolymers.
    Ojha U; Feng D; Chandekar A; Whitten JE; Faust R
    Langmuir; 2009 Jun; 25(11):6319-27. PubMed ID: 19334689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of thickness increase of intraoral autopolymerizing hard denture base liners on the temperature rise during the polymerization process.
    Dimiou AM; Michalakis K; Pissiotis A
    J Prosthet Dent; 2014 Jun; 111(6):512-20. PubMed ID: 24360010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement of acrylic resins for provisional fixed restorations. Part I: Mechanical properties.
    Zuccari AG; Oshida Y; Moore BK
    Biomed Mater Eng; 1997; 7(5):327-43. PubMed ID: 9457383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification of leachable substances from polymer-based orthodontic base-plate materials.
    Kopperud HM; Kleven IS; Wellendorf H
    Eur J Orthod; 2011 Feb; 33(1):26-31. PubMed ID: 20624754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of poly(methyl methacrylate) surface treatments on the adhesion of silicone-based resilient denture liners.
    Cavalcanti YW; Bertolini MM; Cury AA; da Silva WJ
    J Prosthet Dent; 2014 Dec; 112(6):1539-44. PubMed ID: 25258267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pre-processing methods on bond strength between acrylic resin teeth and acrylic denture base resin.
    Kurt M; Saraç YŞ; Ural C; Saraç D
    Gerodontology; 2012 Jun; 29(2):e357-62. PubMed ID: 21564271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of acrylic resins for provisional fixed restorations. Part II: Changes in mechanical properties as a function of time and physical properties.
    Zuccari AG; Oshida Y; Miyazaki M; Fukuishi K; Onose H; Moore BK
    Biomed Mater Eng; 1997; 7(5):345-55. PubMed ID: 9457384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of storage duration on the hardness and tensile bond strength of silicone- and acrylic resin-based resilient denture liners to a processed denture base acrylic resin.
    Mese A; Guzel KG
    J Prosthet Dent; 2008 Feb; 99(2):153-9. PubMed ID: 18262017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Synthesis and application of novel acrylic resin as enteric coating].
    Guo S; Fang X; Huang H; Hu X
    Yao Xue Xue Bao; 1998 Nov; 33(11):860-3. PubMed ID: 12016949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical evaluation of silica-glass fiber reinforced polymers for prosthodontic applications.
    Meriç G; Dahl JE; Ruyter IE
    Eur J Oral Sci; 2005 Jun; 113(3):258-64. PubMed ID: 15953252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of chemical analysis of residual monomer in a chemical-cured dental acrylic material to an FTIR method.
    Duray SJ; Gilbert JL; Lautenschlager EP
    Dent Mater; 1997 Jul; 13(4):240-5. PubMed ID: 11696903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro comparison of the shear bond strengths of two different gingiva-colored materials bonded to commercially pure titanium and acrylic artificial teeth.
    Elzarug YA; Galburt RB; Ali A; Finkelman M; Dam HG
    J Prosthodont; 2014 Jun; 23(4):313-9. PubMed ID: 24521462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimization of the inevitable residual monomer in denture base acrylic.
    Lung CY; Darvell BW
    Dent Mater; 2005 Dec; 21(12):1119-28. PubMed ID: 16040111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid natural-synthetic chitosan resin: thermal and mechanical behavior.
    Flores-Ramírez N; Luna-Bárcenas G; Vásquez-García SR; Muñoz-Saldaña J; Elizalde-Peña EA; Gupta RB; Sanchez IC; González-Hernández J; Garcia-Gaitan B; Villasenor-Ortega F
    J Biomater Sci Polym Ed; 2008; 19(2):259-73. PubMed ID: 18237496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.