BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15924386)

  • 1. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Pan T; Woolley AT; Lee ML
    Anal Chem; 2004 Dec; 76(23):6948-55. PubMed ID: 15571346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents.
    Brown L; Koerner T; Horton JH; Oleschuk RD
    Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization.
    Xu G; Wang J; Chen Y; Zhang L; Wang D; Chen G
    Lab Chip; 2006 Jan; 6(1):145-8. PubMed ID: 16372082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar thin film device for capillary electrophoresis.
    Peeni BA; Conkey DB; Barber JP; Kelly RT; Lee ML; Woolley AT; Hawkins AR
    Lab Chip; 2005 May; 5(5):501-5. PubMed ID: 15856085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low temperature bonding of poly(methylmethacrylate) electrophoresis microchips by in situ polymerisation.
    Chen G; Li J; Qu S; Chen D; Yang P
    J Chromatogr A; 2005 Nov; 1094(1-2):138-47. PubMed ID: 16257300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip.
    Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A
    Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining.
    Zhao DS; Roy B; McCormick MT; Kuhr WG; Brazill SA
    Lab Chip; 2003 May; 3(2):93-9. PubMed ID: 15100789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Electrophoresis; 2005 Nov; 26(22):4333-44. PubMed ID: 16287176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD
    Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfabricated polymer chip for capillary gel electrophoresis.
    Hong JW; Hosokawa K; Fujii T; Seki M; Endo I
    Biotechnol Prog; 2001; 17(5):958-62. PubMed ID: 11587590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A
    Electrophoresis; 2005 Aug; 26(16):3160-8. PubMed ID: 16041703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection.
    Wang J; Pumera M; Chatrathi MP; Escarpa A; Konrad R; Griebel A; Dörner W; Löwe H
    Electrophoresis; 2002 Feb; 23(4):596-601. PubMed ID: 11870771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive heparin immobilized onto microfluidic channels in poly(dimethylsiloxane) results in hydrophilic surface properties.
    Thorslund S; Sanchez J; Larsson R; Nikolajeff F; Bergquist J
    Colloids Surf B Biointerfaces; 2005 Dec; 46(4):240-7. PubMed ID: 16352425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-reactive acrylic copolymer for fabrication of microfluidic devices.
    Liu J; Sun X; Lee ML
    Anal Chem; 2005 Oct; 77(19):6280-7. PubMed ID: 16194089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.