These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 15924435)

  • 1. Phosphorylation of the RGS protein Sst2 by the MAP kinase Fus3 and use of Sst2 as a model to analyze determinants of substrate sequence specificity.
    Parnell SC; Marotti LA; Kiang L; Torres MP; Borchers CH; Dohlman HG
    Biochemistry; 2005 Jun; 44(22):8159-66. PubMed ID: 15924435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae.
    Chasse SA; Flanary P; Parnell SC; Hao N; Cha JY; Siderovski DP; Dohlman HG
    Eukaryot Cell; 2006 Feb; 5(2):330-46. PubMed ID: 16467474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback phosphorylation of an RGS protein by MAP kinase in yeast.
    Garrison TR; Zhang Y; Pausch M; Apanovitch D; Aebersold R; Dohlman HG
    J Biol Chem; 1999 Dec; 274(51):36387-91. PubMed ID: 10593933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics reveals a Gα/MAPK signaling hub that controls pheromone-induced cellular polarization in yeast.
    Waszczak N; DeFlorio R; Ismael A; Cheng N; Stone DE; Metodiev MV
    J Proteomics; 2019 Sep; 207():103467. PubMed ID: 31351147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of receptor dynamics by the regulator of G protein signaling Sst2.
    Venkatapurapu SP; Kelley JB; Dixit G; Pena M; Errede B; Dohlman HG; Elston TC
    Mol Biol Cell; 2015 Nov; 26(22):4124-34. PubMed ID: 26310439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory phosphorylation of yeast Fus3 MAP kinase controls periodic gene expression and morphogenesis.
    Hilioti Z; Sabbagh W; Paliwal S; Bergmann A; Goncalves MD; Bardwell L; Levchenko A
    Curr Biol; 2008 Nov; 18(21):1700-6. PubMed ID: 18976914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the functional contributions of invariant serine residues in yeast mevalonate diphosphate decarboxylase.
    Krepkiy DV; Miziorko HM
    Biochemistry; 2005 Feb; 44(7):2671-7. PubMed ID: 15709780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis.
    Simke WC; Johnson CP; Hart AJ; Mayhue S; Craig PL; Sojka S; Kelley JB
    Life Sci Alliance; 2022 Oct; 5(10):. PubMed ID: 35985794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DEP-domain-mediated regulation of GPCR signaling responses.
    Ballon DR; Flanary PL; Gladue DP; Konopka JB; Dohlman HG; Thorner J
    Cell; 2006 Sep; 126(6):1079-93. PubMed ID: 16990133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of yeast pyruvate kinase 1 as a protein kinase A substrate, and specificity of the phosphorylation site sequence in the whole protein.
    Portela P; Moreno S; Rossi S
    Biochem J; 2006 May; 396(1):117-26. PubMed ID: 16426231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family.
    Druey KM; Blumer KJ; Kang VH; Kehrl JH
    Nature; 1996 Feb; 379(6567):742-6. PubMed ID: 8602223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified KESTREL search reveals a basophilic substrate consensus for the Saccharomyces cerevisiae Npr1 protein kinase.
    Gander S; Martin D; Hauri S; Moes S; Poletto G; Pagano MA; Marin O; Meggio F; Jenoe P
    J Proteome Res; 2009 Nov; 8(11):5305-16. PubMed ID: 19780626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of substitution of tryptophan 412 in the substrate activation pathway of yeast pyruvate decarboxylase.
    Li H; Jordan F
    Biochemistry; 1999 Aug; 38(31):10004-12. PubMed ID: 10433707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Ser424 as the protein kinase A phosphorylation site in CTP synthetase from Saccharomyces cerevisiae.
    Park TS; Ostrander DB; Pappas A; Carman GM
    Biochemistry; 1999 Jul; 38(27):8839-48. PubMed ID: 10393561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase.
    Saxena M; Williams S; Taskén K; Mustelin T
    Nat Cell Biol; 1999 Sep; 1(5):305-11. PubMed ID: 10559944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strains isogenic to S288C used in the yeast genome sequencing programme carry a functional KSS1 gene.
    Morillon A; Springer M; Lesage P
    Curr Genet; 2001 Jul; 39(5-6):291-6. PubMed ID: 11525401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro.
    Errede B; Gartner A; Zhou Z; Nasmyth K; Ammerer G
    Nature; 1993 Mar; 362(6417):261-4. PubMed ID: 8384702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the rapamycin-sensitive phosphorylation sites within the Ser/Thr-rich domain of the yeast Npr1 protein kinase.
    Gander S; Bonenfant D; Altermatt P; Martin DE; Hauri S; Moes S; Hall MN; Jenoe P
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3743-53. PubMed ID: 18980262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3).
    Rezabkova L; Boura E; Herman P; Vecer J; Bourova L; Sulc M; Svoboda P; Obsilova V; Obsil T
    J Struct Biol; 2010 Jun; 170(3):451-61. PubMed ID: 20347994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.