These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 15924435)

  • 21. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3).
    Rezabkova L; Boura E; Herman P; Vecer J; Bourova L; Sulc M; Svoboda P; Obsilova V; Obsil T
    J Struct Biol; 2010 Jun; 170(3):451-61. PubMed ID: 20347994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.
    Shim E; Park SH
    Biochem Biophys Res Commun; 2014 Jan; 443(1):252-8. PubMed ID: 24309106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast.
    Teige M; Scheikl E; Reiser V; Ruis H; Ammerer G
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5625-30. PubMed ID: 11344302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endoproteolytic processing of Sst2, a multidomain regulator of G protein signaling in yeast.
    Hoffman GA; Garrison TR; Dohlman HG
    J Biol Chem; 2000 Dec; 275(48):37533-41. PubMed ID: 10982801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homology modeling studies of yeast Mitogen-Activated Protein Kinases (MAPKS): structural motifs as a basis for specificity.
    Smith DL; Nilar SH
    Protein Pept Lett; 2010 Jun; 17(6):732-8. PubMed ID: 19995338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative profiling of dual phosphorylation of Fus3 MAP kinase in Saccharomyces cerevisiae.
    Hur JY; Kang GY; Choi MY; Jung JW; Kim KP; Park SH
    Mol Cells; 2008 Jul; 26(1):41-7. PubMed ID: 18596411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of major ERK-related phosphorylation sites in Gab1.
    Lehr S; Kotzka J; Avci H; Sickmann A; Meyer HE; Herkner A; Muller-Wieland D
    Biochemistry; 2004 Sep; 43(38):12133-40. PubMed ID: 15379552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases.
    Gonzalez FA; Raden DL; Davis RJ
    J Biol Chem; 1991 Nov; 266(33):22159-63. PubMed ID: 1939237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of phosphorylation sites on the yeast ribonucleotide reductase inhibitor Sml1.
    Uchiki T; Dice LT; Hettich RL; Dealwis C
    J Biol Chem; 2004 Mar; 279(12):11293-303. PubMed ID: 14684746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negative feedback that improves information transmission in yeast signalling.
    Yu RC; Pesce CG; Colman-Lerner A; Lok L; Pincus D; Serra E; Holl M; Benjamin K; Gordon A; Brent R
    Nature; 2008 Dec; 456(7223):755-61. PubMed ID: 19079053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of phosphotransferase activity of hexokinase 2 from Saccharomyces cerevisiae by modification at serine-14.
    Golbik R; Naumann M; Otto A; Müller E; Behlke J; Reuter R; Hübner G; Kriegel TM
    Biochemistry; 2001 Jan; 40(4):1083-90. PubMed ID: 11170432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PhosphoPep--a database of protein phosphorylation sites in model organisms.
    Bodenmiller B; Campbell D; Gerrits B; Lam H; Jovanovic M; Picotti P; Schlapbach R; Aebersold R
    Nat Biotechnol; 2008 Dec; 26(12):1339-40. PubMed ID: 19060867
    [No Abstract]   [Full Text] [Related]  

  • 33. Chemical genetic approach for kinase-substrate mapping by covalent capture of thiophosphopeptides and analysis by mass spectrometry.
    Hertz NT; Wang BT; Allen JJ; Zhang C; Dar AC; Burlingame AL; Shokat KM
    Curr Protoc Chem Biol; 2010 Mar; 2(1):15-36. PubMed ID: 23836541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone.
    Li S; Liu Q; Wang E; Wang J
    iScience; 2023 Oct; 26(10):107885. PubMed ID: 37766979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SUB1A-1 anchors a regulatory cascade for epigenetic and transcriptional controls of submergence tolerance in rice.
    Lin CC; Lee WJ; Zeng CY; Chou MY; Lin TJ; Lin CS; Ho MC; Shih MC
    PNAS Nexus; 2023 Jul; 2(7):pgad229. PubMed ID: 37492276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophobic cue-induced appressorium formation depends on MoSep1-mediated MoRgs7 phosphorylation and internalization in Magnaporthe oryzae.
    Xu J; Liu X; Zhang W; Feng W; Liu M; Yang L; Yang Z; Zhang H; Zhang Z; Wang P
    PLoS Genet; 2023 May; 19(5):e1010748. PubMed ID: 37186579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis.
    Simke WC; Johnson CP; Hart AJ; Mayhue S; Craig PL; Sojka S; Kelley JB
    Life Sci Alliance; 2022 Oct; 5(10):. PubMed ID: 35985794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The rice blast fungus MoRgs1 functioning in cAMP signaling and pathogenicity is regulated by casein kinase MoCk2 phosphorylation and modulated by membrane protein MoEmc2.
    Yu R; Shen X; Liu M; Liu X; Yin Z; Li X; Feng W; Hu J; Zhang H; Zheng X; Wang P; Zhang Z
    PLoS Pathog; 2021 Jun; 17(6):e1009657. PubMed ID: 34133468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcineurin, the Ca
    Ly N; Cyert MS
    Mol Biol Cell; 2017 Mar; 28(5):576-586. PubMed ID: 28077617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14.
    Jonkers W; Fischer MS; Do HP; Starr TL; Glass NL
    Genetics; 2016 May; 203(1):319-34. PubMed ID: 27029735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.