BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15924447)

  • 1. Horseradish peroxidase activity in a reverse catanionic microemulsion.
    Mahiuddin S; Renoncourt A; Bauduin P; Touraud D; Kunz W
    Langmuir; 2005 Jun; 21(12):5259-62. PubMed ID: 15924447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic studies of catanionic reverse microemulsion: correlation with the superactivity of horseradish peroxidase enzyme in a restricted environment.
    Biswas R; Das AR; Pradhan T; Touraud D; Kunz W; Mahiuddin S
    J Phys Chem B; 2008 May; 112(21):6620-8. PubMed ID: 18457442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions.
    Roy S; Dasgupta A; Das PK
    Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities.
    Bauduin P; Touraud D; Kunz W; Savelli MP; Pulvin S; Ninham BW
    J Colloid Interface Sci; 2005 Dec; 292(1):244-54. PubMed ID: 16009371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of nano-emulsion formation by dilution of microemulsions.
    Solè I; Solans C; Maestro A; González C; Gutiérrez JM
    J Colloid Interface Sci; 2012 Jun; 376(1):133-9. PubMed ID: 22480397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Cubic-Phase Microemulsions with Anionic and Cationic Surfactants at Equal Amounts of Oil and Water.
    Li X; Kunieda H
    J Colloid Interface Sci; 2000 Nov; 231(1):143-151. PubMed ID: 11082258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase.
    Moniruzzaman M; Kamiya N; Goto M
    Langmuir; 2009 Jan; 25(2):977-82. PubMed ID: 19113810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis.
    Leung MH; Colangelo H; Kee TW
    Langmuir; 2008 Jun; 24(11):5672-5. PubMed ID: 18459746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior, topology, and growth of neutral catanionic reverse micelles.
    Abécassis B; Testard F; Arleth L; Hansen S; Grillo I; Zemb T
    Langmuir; 2006 Sep; 22(19):8017-28. PubMed ID: 16952236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of low-toxic and temperature-sensitive anionic microemulsions using short propyleneglycol alkyl ethers as cosurfactants.
    Bauduin P; Touraud D; Kunz W
    Langmuir; 2005 Aug; 21(18):8138-45. PubMed ID: 16114914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanisms of peroxidase oxidation of o-dianisidine, 3,3',5,5'-tetramethylbenzidine, and o-phenylenediamine in the presence of sodium dodecyl sulfate].
    Kireĭko AV; Veselova IA; Shekhovtsova TN
    Bioorg Khim; 2006; 32(1):80-6. PubMed ID: 16523724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral microemulsion electrokinetic chromatography with two chiral components: Improved separations via synergies between a chiral surfactant and a chiral cosurfactant.
    Kahle KA; Foley JP
    Electrophoresis; 2006 Feb; 27(4):896-904. PubMed ID: 16470633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR study of horseradish peroxidase in reverse micelles.
    Chen J; Xia C; Niu J; Li S
    Biochem Biophys Res Commun; 2001 Apr; 282(5):1220-3. PubMed ID: 11302746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions.
    Kong B; Guan B; Yates MZ; Wu Z
    Langmuir; 2012 Oct; 28(40):14137-42. PubMed ID: 22839648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between zwitterionic and conventional anionic and cationic surfactants.
    McLachlan AA; Marangoni DG
    J Colloid Interface Sci; 2006 Mar; 295(1):243-8. PubMed ID: 16213512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic and structural properties of surfactant-horseradish peroxidase complex in organic media.
    Kamiya N; Inoue M; Goto M; Nakamura N; Naruta Y
    Biotechnol Prog; 2000; 16(1):52-8. PubMed ID: 10662489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of ascorbic acid on the rheological properties of the microemulsion region of the SDS/pentanol/water system.
    Szymula M
    J Cosmet Sci; 2005; 56(4):267-77. PubMed ID: 16130047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting blood-brain barrier penetration of drugs by microemulsion liquid chromatography with corrected retention factor.
    Liu J; Sun J; Sui X; Wang Y; Hou Y; He Z
    J Chromatogr A; 2008 Jul; 1198-1199():164-72. PubMed ID: 18541248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catanionic micelles as a model to mimic biological membranes in the presence of anesthetic alcohols.
    Mahiuddin S; Zech O; Raith S; Touraud D; Kunz W
    Langmuir; 2009 Nov; 25(21):12516-21. PubMed ID: 19856990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition.
    Vlachy N; Drechsler M; Verbavatz JM; Touraud D; Kunz W
    J Colloid Interface Sci; 2008 Mar; 319(2):542-8. PubMed ID: 18164719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.