BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15924953)

  • 1. Remediation of arsenic-contaminated soils and washing effluents.
    Jang M; Hwang JS; Choi SI; Park JK
    Chemosphere; 2005 Jul; 60(3):344-54. PubMed ID: 15924953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions.
    Yang JS; Lee JY; Baek K; Kwon TS; Choi J
    J Hazard Mater; 2009 Nov; 171(1-3):443-51. PubMed ID: 19577840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tannic acid for remediation of historically arsenic-contaminated soils.
    Gusiatin ZM; Klik B; Kulikowska D
    Environ Technol; 2019 Mar; 40(8):1050-1061. PubMed ID: 29235921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of arsenic species from spiked soils and standard reference materials.
    Kahakachchi C; Uden PC; Tyson JF
    Analyst; 2004 Aug; 129(8):714-8. PubMed ID: 15284914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals.
    Makino T; Sugahara K; Sakurai Y; Takano H; Kamiya T; Sasaki K; Itou T; Sekiya N
    Environ Pollut; 2006 Nov; 144(1):2-10. PubMed ID: 16580105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile arsenic species in unpolluted and polluted soils.
    Huang JH; Matzner E
    Sci Total Environ; 2007 May; 377(2-3):308-18. PubMed ID: 17391732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reuse of washing effluent containing oxalic acid by a combined precipitation-acidification process.
    Lim M; Kim MJ
    Chemosphere; 2013 Jan; 90(4):1526-32. PubMed ID: 23041037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E; Naidu R; Weber J; Juhasz AL
    Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites.
    Chopra BK; Bhat S; Mikheenko IP; Xu Z; Yang Y; Luo X; Chen H; van Zwieten L; Lilley RM; Zhang R
    Sci Total Environ; 2007 Jun; 378(3):331-42. PubMed ID: 17407787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative.
    Chatain V; Hanna K; de Brauer C; Bayard R; Germain P
    Chemosphere; 2004 Oct; 57(3):197-206. PubMed ID: 15312736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromigration of arsenic and co-existing metals in mine tailings.
    Isosaari P; Sillanpää M
    Chemosphere; 2010 Nov; 81(9):1155-8. PubMed ID: 20888026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns.
    Gonzaga MI; Ma LQ; Santos JA; Matias MI
    Sci Total Environ; 2009 Aug; 407(16):4711-6. PubMed ID: 19476972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate.
    Kim EJ; Baek K
    J Hazard Mater; 2015 Mar; 284():19-26. PubMed ID: 25463213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification.
    Makino T; Takano H; Kamiya T; Itou T; Sekiya N; Inahara M; Sakurai Y
    Chemosphere; 2008 Jan; 70(6):1035-43. PubMed ID: 17919681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.