These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
620 related articles for article (PubMed ID: 15925003)
1. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003 [TBL] [Abstract][Full Text] [Related]
2. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Tanaka F; Ando A; Nakamura T; Takagi H; Shima J Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074 [TBL] [Abstract][Full Text] [Related]
3. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production. Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619 [TBL] [Abstract][Full Text] [Related]
4. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y; Takahashi S; Shima J; Takagi H Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471 [TBL] [Abstract][Full Text] [Related]
5. Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker's yeast isolated from dried sweet potatoes (hoshi-imo). Nishida O; Kuwazaki S; Suzuki C; Shima J Biosci Biotechnol Biochem; 2004 Jul; 68(7):1442-8. PubMed ID: 15277748 [TBL] [Abstract][Full Text] [Related]
6. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X; Guo X; Liu N; Zhang B Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097 [TBL] [Abstract][Full Text] [Related]
7. A novel feeding method in commercial Baker's yeast production. Zamani J; Pournia P; Seirafi HA J Appl Microbiol; 2008 Sep; 105(3):674-80. PubMed ID: 18341556 [TBL] [Abstract][Full Text] [Related]
8. Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Schoondermark-Stolk SA; Jansen M; Veurink JH; Verkleij AJ; Verrips CT; Euverink GJ; Boonstra J; Dijkhuizen L Appl Microbiol Biotechnol; 2006 Mar; 70(2):237-46. PubMed ID: 16041576 [TBL] [Abstract][Full Text] [Related]
9. Production of baker's yeast using date juice. Beiroti A; Hosseini SN Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):746-50. PubMed ID: 17822056 [TBL] [Abstract][Full Text] [Related]
10. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. Vohra A; Satyanarayana T J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926 [TBL] [Abstract][Full Text] [Related]
11. Fed batch culture of Saccharomyces cerevisiae: a perspective of computer control to enhance the productivity in baker's yeast cultivation. Aiba S; Nagai S; Nishizawa Y Biotechnol Bioeng; 1976 Jul; 18(7):1001-16. PubMed ID: 782581 [TBL] [Abstract][Full Text] [Related]
12. Fed-batch culture strategy for high yield of baker's yeast with high fermentative activity. Li Y; Chen J; Song Q; Lun S; Katakura Y Chin J Biotechnol; 1997; 13(2):105-13. PubMed ID: 9343709 [TBL] [Abstract][Full Text] [Related]
13. [Increase of rising activity of commercial yeasts by application of stress conditions during their propagation]. Galvagno MA; Cerrutti P Rev Argent Microbiol; 2004; 36(1):41-6. PubMed ID: 15174749 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types. Nakata H; Tamura M; Shintani T; Gomi K J Biosci Bioeng; 2014 Jun; 117(6):715-9. PubMed ID: 24333188 [TBL] [Abstract][Full Text] [Related]
16. Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Praekelt UM; Byrne KL; Meacock PA Yeast; 1994 Apr; 10(4):481-90. PubMed ID: 7941734 [TBL] [Abstract][Full Text] [Related]
17. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S; Ikeda K; Takahashi N; Inoue Y Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771 [TBL] [Abstract][Full Text] [Related]
18. Functional genomics of commercial baker's yeasts that have different abilities for sugar utilization and high-sucrose tolerance under different sugar conditions. Tanaka-Tsuno F; Mizukami-Murata S; Murata Y; Nakamura T; Ando A; Takagi H; Shima J Yeast; 2007 Oct; 24(10):901-11. PubMed ID: 17724779 [TBL] [Abstract][Full Text] [Related]
19. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Hjortmo S; Patring J; Andlid T Int J Food Microbiol; 2008 Mar; 123(1-2):93-100. PubMed ID: 18234383 [TBL] [Abstract][Full Text] [Related]
20. Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation. Jiménez-Martí E; del Olmo ML FEMS Yeast Res; 2008 Mar; 8(2):245-56. PubMed ID: 17986253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]