These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15925007)

  • 1. Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity.
    Chihib NE; Tierny Y; Mary P; Hornez JP
    Int J Food Microbiol; 2005 Jun; 102(1):113-9. PubMed ID: 15925007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2.
    Yumoto I; Hirota K; Iwata H; Akutsu M; Kusumoto K; Morita N; Ezura Y; Okuyama H; Matsuyama H
    Arch Microbiol; 2004 May; 181(5):345-51. PubMed ID: 15067498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Influence of salinity and temperature on fatty acid composition of Pseudomonas fluorescens GNP-OHP-3 membrane].
    Pucci GN; Härtig C; Pucci OH
    Rev Argent Microbiol; 2004; 36(1):6-15. PubMed ID: 15174743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial fatty acids and thermal adaptation.
    Suutari M; Laakso S
    Crit Rev Microbiol; 1994; 20(4):285-328. PubMed ID: 7857519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of temperature, salinity and pH on the growth of environmental Aeromonas and Vibrio species isolated from Mai Po and the Inner Deep Bay Nature Reserve Ramsar Site of Hong Kong.
    Wang Y; Gu JD
    J Basic Microbiol; 2005; 45(1):83-93. PubMed ID: 15678554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids.
    Unell M; Kabelitz N; Jansson JK; Heipieper HJ
    FEMS Microbiol Lett; 2007 Jan; 266(2):138-43. PubMed ID: 17233723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sodium chloride and citric acid on growth and toxin production by A. caviae and A. sobria at moderate and low temperatures.
    Abu-Ghazaleh BM
    New Microbiol; 2000 Oct; 23(4):433-40. PubMed ID: 11061632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature- and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria.
    Männistö MK; Puhakka JA
    Arch Microbiol; 2001 Dec; 177(1):41-6. PubMed ID: 11797043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature adaptation in yeasts: the role of fatty acids.
    Suutari M; Liukkonen K; Laakso S
    J Gen Microbiol; 1990 Aug; 136(8):1469-74. PubMed ID: 2262787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal regulation of fatty acid synthetase from Brevibacterium ammoniagenes.
    Kawaguchi A; Seyama Y; Sasaki K; Okuda S; Yamakawa T
    J Biochem; 1979 Mar; 85(3):865-9. PubMed ID: 429269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe.
    McDonough VM; Roth TM
    Antonie Van Leeuwenhoek; 2004 Nov; 86(4):349-54. PubMed ID: 15702387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature adaptation in Lactobacillus fermentum: interconversions of oleic, vaccenic and dihydrosterulic acids.
    Suutari M; Laakso S
    J Gen Microbiol; 1992 Mar; 138(3):445-50. PubMed ID: 1593259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Aeromonas caviae and A. sobria by sodium choloride, citric acid, ascorbic acid, potassium sorbate and extracts of Thymus vulgaris.
    Abu-Ghazaleh BM
    Jpn J Infect Dis; 2000 Jun; 53(3):111-5. PubMed ID: 10957708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids.
    Pernet F; Tremblay R; Comeau L; Guderley H
    J Exp Biol; 2007 Sep; 210(Pt 17):2999-3014. PubMed ID: 17704075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions.
    Kraffe E; Marty Y; Guderley H
    J Exp Biol; 2007 Jan; 210(Pt 1):149-65. PubMed ID: 17170158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of food system conditions on N-acyl-L-homoserine lactones production by Aeromonas spp.
    Medina-Martínez MS; Uyttendaele M; Demolder V; Debevere J
    Int J Food Microbiol; 2006 Dec; 112(3):244-52. PubMed ID: 16797762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of cultivation conditions on fatty acid content of Clavibacter michiganensis subsp. michiganensis lipids].
    Moroz SM; Hvozdiak RI; Chernenko IeP; Ostapchuk AM
    Mikrobiol Z; 2010; 72(3):28-36. PubMed ID: 20695226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Swarming phenomenon of an aeromonas spec (author's transl)].
    Müller HE; Lenz W
    Zentralbl Bakteriol Orig A; 1975 May; 231(4):451-65. PubMed ID: 1101579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of viability of Aeromonas hydrophila in increasing concentrations of sodium chloride at different temperatures by flow cytometry and plate count technique.
    Pianetti A; Manti A; Boi P; Citterio B; Sabatini L; Papa S; Rocchi MB; Bruscolini F
    Int J Food Microbiol; 2008 Oct; 127(3):252-60. PubMed ID: 18765166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.