These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15925195)

  • 1. Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei.
    Hawley ML; Melcher JR; Fullerton BC
    Hear Res; 2005 Jun; 204(1-2):101-10. PubMed ID: 15925195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers.
    Sigalovsky IS; Melcher JR
    Hear Res; 2006 May; 215(1-2):67-76. PubMed ID: 16644153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds.
    Dewey RS; Francis ST; Guest H; Prendergast G; Millman RE; Plack CJ; Hall DA
    Neuroimage; 2020 Jan; 204():116239. PubMed ID: 31586673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.
    Darrow KN; Slama MC; Kozin ED; Owoc M; Hancock K; Kempfle J; Edge A; Lacour S; Boyden E; Polley D; Brown MC; Lee DJ
    Brain Res; 2015 Mar; 1599():44-56. PubMed ID: 25481416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acoustic evoked brainstem potential of the cat. An experimental study.
    Csécsei GI; Klug N
    Acta Biol Hung; 1996; 47(1-4):21-40. PubMed ID: 9123993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of auditory brainstem responses in cats: whole brainstem mapping, and a lesion and HRP study of the inferior colliculus.
    Kaga K; Shinoda Y; Suzuki JI
    Acta Otolaryngol; 1997 Mar; 117(2):197-201. PubMed ID: 9105447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
    Palmer AR; Jiang D; Marshall DH
    J Neurophysiol; 1996 Feb; 75(2):780-94. PubMed ID: 8714652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional magnetic resonance imaging of human pontine auditory pathway.
    Hesselmann V; Wedekind C; Kugel H; Schulte O; Krug B; Klug N; Lackner KJ
    Hear Res; 2001 Aug; 158(1-2):160-4. PubMed ID: 11506948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components.
    Guex AA; Hight AE; Narasimhan S; Vachicouras N; Lee DJ; Lacour SP; Brown MC
    Hear Res; 2019 Jun; 377():339-352. PubMed ID: 30867111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit.
    Fitzpatrick DC; Kuwada S; Batra R; Trahiotis C
    J Neurophysiol; 1995 Dec; 74(6):2469-86. PubMed ID: 8747207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response properties of single units in the dorsal nucleus of the lateral lemniscus and paralemniscal zone of an echolocating bat.
    Covey E
    J Neurophysiol; 1993 Mar; 69(3):842-59. PubMed ID: 8463819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BOLD fMRI investigation of the rat auditory pathway and tonotopic organization.
    Cheung MM; Lau C; Zhou IY; Chan KC; Cheng JS; Zhang JW; Ho LC; Wu EX
    Neuroimage; 2012 Apr; 60(2):1205-11. PubMed ID: 22297205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity elicited in the auditory pathway of the rat by electrical stimulation of the cochlea.
    Vischer MW; Bajo-Lorenzana V; Zhang J; Häusler R; Rouiller EM
    ORL J Otorhinolaryngol Relat Spec; 1995; 57(6):305-9. PubMed ID: 8789478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech-evoked auditory brainstem response; electrophysiological evidence of upper brainstem facilitative role on sound lateralization in noise.
    Moossavi A; Lotfi Y; Javanbakht M; Faghihzadeh S
    Neurol Sci; 2020 Mar; 41(3):611-617. PubMed ID: 31732889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of ascending projections to an isofrequency region of the mustache bat's inferior colliculus.
    Ross LS; Pollak GD; Zook JM
    J Comp Neurol; 1988 Apr; 270(4):488-505. PubMed ID: 2836478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNTFRalpha and CNTF expressions in the auditory brainstem: light and electron microscopy study.
    Hafidi A; Decourt B; MacLennan AJ
    Hear Res; 2004 Aug; 194(1-2):14-24. PubMed ID: 15276672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional magnetic resonance imaging confirms forward suppression for rapidly alternating sounds in human auditory cortex but not in the inferior colliculus.
    Uhlig CH; Dykstra AR; Gutschalk A
    Hear Res; 2016 May; 335():25-32. PubMed ID: 26899342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal substrates involved in processing of communicative acoustic signals in tree shrews: a 2-deoxyglucose study.
    Binz H; Zurhorst C; Zimmermann E; Rahmann H
    Neurosci Lett; 1990 Apr; 112(1):25-30. PubMed ID: 2385359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex.
    Lau C; Zhang JW; Cheng JS; Zhou IY; Cheung MM; Wu EX
    PLoS One; 2013; 8(8):e70706. PubMed ID: 23940631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.