BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 15925372)

  • 1. In vivo age- and sex-related creep of human lumbar motion segments and discs in pure centric tension.
    Kurutz M
    J Biomech; 2006; 39(7):1180-90. PubMed ID: 15925372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-sensitivity of time-related in vivo deformability of human lumbar motion segments and discs in pure centric tension.
    Kurutz M
    J Biomech; 2006; 39(1):147-57. PubMed ID: 16271599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biomechanical experiments for measuring traction lengthening of the lumbar spine during weight bath therapy].
    Kurutzné KM; Bene E; Lovas A; Molnár P; Monori E
    Orv Hetil; 2002 Mar; 143(13):673-84. PubMed ID: 11975045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device.
    Heuer F; Schmitt H; Schmidt H; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):737-44. PubMed ID: 17561321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase.
    Kurutz M; Oroszváry L
    J Biomech; 2010 Feb; 43(3):433-41. PubMed ID: 19883918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of geometric deformation of lumbar intervertebral discs under in-vivo weightbearing condition.
    Wang S; Xia Q; Passias P; Wood K; Li G
    J Biomech; 2009 Apr; 42(6):705-11. PubMed ID: 19268946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical differences between lumbar and tail discs in the mouse.
    Sarver JJ; Elliott DM
    J Orthop Res; 2005 Jan; 23(1):150-5. PubMed ID: 15607887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single lamellar mechanics of the human lumbar anulus fibrosus.
    Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P
    Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When are intervertebral discs stronger than their adjacent vertebrae?
    Skrzypiec D; Tarala M; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2455-61. PubMed ID: 18090085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep characteristics of the human spinal column.
    Kazarian LE
    Orthop Clin North Am; 1975 Jan; 6(1):3-18. PubMed ID: 1113976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength of the cervical spine in compression and bending.
    Przybyla AS; Skrzypiec D; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1612-20. PubMed ID: 17621208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination.
    Grauer JN; Biyani A; Faizan A; Kiapour A; Sairyo K; Ivanov A; Ebraheim NA; Patel TCh; Goel VK
    Spine J; 2006; 6(6):659-66. PubMed ID: 17088196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI.
    Campana S; Charpail E; de Guise JA; Rillardon L; Skalli W; Mitton D
    J Mech Behav Biomed Mater; 2011 May; 4(4):593-9. PubMed ID: 21396608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constitutive modeling of the human lumbar intervertebral disc and forward-backward bending simulation.
    Tadano S; Katagiri K; Umehara S; Ukai T
    Biomed Mater Eng; 1997; 7(3):179-91. PubMed ID: 9262831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.