BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 15925494)

  • 21. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA.
    Hauptmann N; Grimsby J; Shih JC; Cadenas E
    Arch Biochem Biophys; 1996 Nov; 335(2):295-304. PubMed ID: 8914926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson's disease.
    Bharath S; Andersen JK
    Antioxid Redox Signal; 2005; 7(7-8):900-10. PubMed ID: 15998245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective and toxic roles of dopamine in Parkinson's disease.
    Segura-Aguilar J; Paris I; Muñoz P; Ferrari E; Zecca L; Zucca FA
    J Neurochem; 2014 Jun; 129(6):898-915. PubMed ID: 24548101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132.
    Zafar KS; Inayat-Hussain SH; Ross D
    J Neurochem; 2007 Aug; 102(3):913-21. PubMed ID: 17504267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain.
    Kruidering M; Van de Water B; de Heer E; Mulder GJ; Nagelkerke JF
    J Pharmacol Exp Ther; 1997 Feb; 280(2):638-49. PubMed ID: 9023274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders.
    Ben-Shachar D; Zuk R; Gazawi H; Ljubuncic P
    Biochem Pharmacol; 2004 May; 67(10):1965-74. PubMed ID: 15130772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson's Disease.
    Biosa A; Arduini I; Soriano ME; Giorgio V; Bernardi P; Bisaglia M; Bubacco L
    ACS Chem Neurosci; 2018 Nov; 9(11):2849-2858. PubMed ID: 29906101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson's disease.
    Li H; Dryhurst G
    J Neurochem; 1997 Oct; 69(4):1530-41. PubMed ID: 9326282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mechanism of specific dopaminergic neuronal death in Parkinson's disease].
    Ogawa N; Asanuma M; Miyoshi K
    Nihon Rinsho; 2004 Sep; 62(9):1629-34. PubMed ID: 15462376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease.
    Chinta SJ; Andersen JK
    Free Radic Biol Med; 2006 Nov; 41(9):1442-8. PubMed ID: 17023271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.
    Barros-Miñones L; Goñi-Allo B; Suquia V; Beitia G; Aguirre N; Puerta E
    Neuropharmacology; 2015 Jun; 93():124-33. PubMed ID: 25666033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins.
    Fitzgerald JC; Ugun-Klusek A; Allen G; De Girolamo LA; Hargreaves I; Ufer C; Abramov AY; Billett EE
    FASEB J; 2014 Jan; 28(1):218-29. PubMed ID: 24051032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis.
    Berndt N; Holzhütter HG; Bulik S
    FEBS J; 2013 Oct; 280(20):5080-93. PubMed ID: 23937586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous dopamine enhances the neurotoxicity of 3-nitropropionic acid in the striatum through the increase of mitochondrial respiratory inhibition and free radicals production.
    Villarán RF; Tomás-Camardiel M; de Pablos RM; Santiago M; Herrera AJ; Navarro A; Machado A; Cano J
    Neurotoxicology; 2008 Mar; 29(2):244-58. PubMed ID: 18093658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow.
    Cohen G; Farooqui R; Kesler N
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4890-4. PubMed ID: 9144160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition.
    Zafar KS; Siegel D; Ross D
    Mol Pharmacol; 2006 Sep; 70(3):1079-86. PubMed ID: 16790533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Therapeutic Implications of Tea Polyphenols Against Dopamine (DA) Neuron Degeneration in Parkinson's Disease (PD).
    Zhou ZD; Xie SP; Saw WT; Ho PGH; Wang H; Lei Z; Yi Z; Tan EK
    Cells; 2019 Aug; 8(8):. PubMed ID: 31426448
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.