These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15925507)

  • 41. A computerized approach towards the estimation of binding parameters to characterize cooperative and non-cooperative multicomponent ligand-receptor interactions.
    Quednau HD; Rao ML
    Int J Biomed Comput; 1985 Mar; 16(2):135-42. PubMed ID: 2995257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulation of association curves and 'Scatchard' plots of binding reactions where ligand and receptor are degraded or internalized.
    Beck JS; Goren HJ
    J Recept Res; 1983; 3(5):561-77. PubMed ID: 6323708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interrupting autocrine ligand-receptor binding: comparison between receptor blockers and ligand decoys.
    Forsten KE; Lauffenburger DA
    Biophys J; 1992 Sep; 63(3):857-61. PubMed ID: 1330038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential misconceptions arising from the application of enzyme kinetic equations to ligand-receptor systems at equilibrium.
    Tomlinson G
    Can J Physiol Pharmacol; 1988 Apr; 66(4):342-9. PubMed ID: 2844370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Displacement analysis of binding inhomogeneities in crude extracts of receptors.
    Batke J; Gaál J
    J Biochem Biophys Methods; 1986 Apr; 12(4):203-12. PubMed ID: 3011880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of receptor binding displacement curves by a nonhomologous ligand, on the basis of an equivalent competition principle.
    van Zoelen EJ
    Anal Biochem; 1992 Feb; 200(2):393-9. PubMed ID: 1321566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic and mechanistic study with optically active, four-coordinate nickel(II) complexes: stereoselectivity in ligand substitution.
    Haus A; Raidt M; Link TA; Elias H
    Inorg Chem; 2000 Oct; 39(22):5111-7. PubMed ID: 11233209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Error introduced by small reflection coefficients in permeability constansts obtained by hemolysis.
    Coe EL
    Biochim Biophys Acta; 1976 Dec; 455(2):550-9. PubMed ID: 999927
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Competitive association binding kinetic assays: a new tool to detect two different binding orientations of a ligand to its target protein under distinct conditions?
    Wittmann HJ; Strasser A
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Jun; 390(6):595-612. PubMed ID: 28220211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo potency revisited - Keep the target in sight.
    Gabrielsson J; Peletier LA; Hjorth S
    Pharmacol Ther; 2018 Apr; 184():177-188. PubMed ID: 29024741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiphasic modelling of ligand/acceptor interactions. The hydrophobicity-dependent binding of relatively small amphiphilic substances to acceptor proteins and the nature and facedness of acceptor sites.
    Heirwegh KP; Vermeir M; Zaman Z
    J Biochem Biophys Methods; 1994 Jul; 29(1):23-47. PubMed ID: 7989645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental artifacts and the analysis of ligand binding data: results of a computer simulation.
    Munson PJ
    J Recept Res; 1983; 3(1-2):249-59. PubMed ID: 6304302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of binding parameters in the presence of coupled reactions.
    Beck JS; Goren HJ
    Cell Biophys; 1985 Mar; 7(1):31-42. PubMed ID: 2408754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterizing ligand-microtubule binding by competition methods.
    Díaz JF; Buey RM
    Methods Mol Med; 2007; 137():245-60. PubMed ID: 18085234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [A new graphic method for determining the rate constant for affinity of a ligand for its receptor].
    Bobrovnik SA
    Ukr Biokhim Zh (1978); 1998; 70(6):144-6. PubMed ID: 10402664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of drug-DNA binding isotherms: a Monte Carlo approach.
    Correia JJ; Chaires JB
    Methods Enzymol; 1994; 240():593-614. PubMed ID: 7823850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the validity and errors of the pseudo-first-order kinetics in ligand-receptor binding.
    Stroberg W; Schnell S
    Math Biosci; 2017 May; 287():3-11. PubMed ID: 27693063
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of association rates by nonspecific binding to DNA and cell membranes.
    Zhou HX; Szabo A
    Phys Rev Lett; 2004 Oct; 93(17):178101. PubMed ID: 15525128
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic model for membrane transport. 1. Effects of membrane volume and partitioning kinetics.
    Makino K; Ohshima H; Kondo T
    Biophys Chem; 1990 Jan; 35(1):85-95. PubMed ID: 2328278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction.
    Eble JA
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.