BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 15925553)

  • 21. Recombinant Gluconacetobacter diazotrophicus containing Cry1Ac gene codes for 130-kDa toxin protein.
    Subashini M; Moushumi Priya A; Sundarakrishnan B; Jayachandran S
    J Mol Microbiol Biotechnol; 2011; 20(4):236-42. PubMed ID: 21934327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover.
    Chan JM; Christiansen J; Dean DR; Seefeldt LC
    Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow.
    Tittsworth RC; Hales BJ
    Biochemistry; 1996 Jan; 35(2):479-87. PubMed ID: 8555218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition.
    Pham DN; Burgess BK
    Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover.
    Cameron LM; Hales BJ
    Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction.
    Fisher K; Dilworth MJ; Newton WE
    Biochemistry; 2006 Apr; 45(13):4190-8. PubMed ID: 16566593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vanadium (V) is reduced by the 'as isolated' nitrogenase Fe-protein at neutral pH.
    Fisher K; Lowe DJ; Petersen J
    Chem Commun (Camb); 2006 Jul; (26):2807-9. PubMed ID: 17009470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis.
    Rasche ME; Seefeldt LC
    Biochemistry; 1997 Jul; 36(28):8574-85. PubMed ID: 9214303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogenase from Azotobacter chroococcum. Purification and properties of the component proteins.
    Yates MG; Planqué K
    Eur J Biochem; 1975 Dec; 60(2):467-76. PubMed ID: 173545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases.
    Fisher K; Hare ND; Newton WE
    Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of steady state Fe and MoFe protein interactions during nitrogenase catalysis.
    Johnson JL; Nyborg AC; Wilson PE; Tolley AM; Nordmeyer FR; Watt GD
    Biochim Biophys Acta; 2000 Nov; 1543(1):24-35. PubMed ID: 11087938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG; Wassink H; Haaker H
    Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state.
    Lowery TJ; Wilson PE; Zhang B; Bunker J; Harrison RG; Nyborg AC; Thiriot D; Watt GD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17131-6. PubMed ID: 17085583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC
    Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of N
    Harris DF; Lukoyanov DA; Shaw S; Compton P; Tokmina-Lukaszewska M; Bothner B; Kelleher N; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2018 Feb; 57(5):701-710. PubMed ID: 29283553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of all stages of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA; Nadtochenko VA; Timofeeva EA
    Biochemistry (Mosc); 1998 Aug; 63(8):1007-13. PubMed ID: 9767192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale purification of high activity Azotobacter vinelandII nitrogenase.
    Burgess BK; Jacobs DB; Stiefel EI
    Biochim Biophys Acta; 1980 Jul; 614(1):196-209. PubMed ID: 6930977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vanadium nitrogenase reduces CO.
    Lee CC; Hu Y; Ribbe MW
    Science; 2010 Aug; 329(5992):642. PubMed ID: 20689010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reinvestigation of the pre-steady-state ATPase activity of the nitrogenase from Azotobacter vinelandii.
    Mensink RE; Wassink H; Haaker H
    Eur J Biochem; 1992 Sep; 208(2):289-94. PubMed ID: 1325902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.