These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15925610)

  • 21. On the anatomy of the adsorption heat versus loading as a function of temperature and adsorbate for a graphitic surface.
    Do DD; Nicholson D; Do HD
    J Colloid Interface Sci; 2008 Sep; 325(1):7-22. PubMed ID: 18571188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment.
    Wongkoblap A; Do DD
    J Phys Chem B; 2007 Dec; 111(50):13949-56. PubMed ID: 18044864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.
    Do DD; Do HD; Nicholson D
    J Phys Chem B; 2009 Jan; 113(4):1030-40. PubMed ID: 19127983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of confinement on the molar enthalpy of argon adsorption in graphitic cylindrical pores: a grand canonical Monte Carlo (GCMC) simulation study.
    Liu Z; Do DD; Nicholson D
    J Colloid Interface Sci; 2011 Sep; 361(1):278-87. PubMed ID: 21696750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the space between closed multiwalled carbon nanotubes by GCMC simulation of nitrogen adsorption.
    Furmaniak S; Terzyk AP; Gauden PA; Lota K; Frackowiak E; Béguin F; Kowalczyk P
    J Colloid Interface Sci; 2008 Jan; 317(2):442-8. PubMed ID: 17950304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple model for studying multilayer adsorption of noninteracting polyatomic species on homogeneous and heterogeneous surfaces.
    Sánchez-Varretti FO; García GD; Ramirez-Pastor AJ; Romá F
    J Chem Phys; 2009 May; 130(19):194711. PubMed ID: 19466859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the heat capacity of adsorbed phases using molecular simulation.
    Birkett GR; Do DD
    J Chem Phys; 2007 Feb; 126(6):064702. PubMed ID: 17313233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution.
    Nieszporek K; Szabelski P; Drach M
    Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of adsorption on the surface tensions of solid-fluid interfaces.
    Ward CA; Wu J
    J Phys Chem B; 2007 Apr; 111(14):3685-94. PubMed ID: 17388534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation.
    Nguyen TX; Cohaut N; Bae JS; Bhatia SK
    Langmuir; 2008 Aug; 24(15):7912-22. PubMed ID: 18590287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of simple fluid on silica surface and nanopore: effect of surface chemistry and pore shape.
    Coasne B; Di Renzo F; Galarneau A; Pellenq RJ
    Langmuir; 2008 Jul; 24(14):7285-93. PubMed ID: 18522440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of polar and non-polar fluids in carbon nanotube bundles: computer simulation and experimental studies.
    Wongkoblap A; Do DD; Wang K
    J Colloid Interface Sci; 2009 Mar; 331(1):65-76. PubMed ID: 19059598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional order-disorder transition of argon monolayer adsorbed on graphitized carbon black: kinetic Monte Carlo method.
    Ustinov EA; Do DD
    J Chem Phys; 2012 Apr; 136(13):134702. PubMed ID: 22482575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study.
    Jedlovszky P; Pártay L; Hoang PN; Picaud S; von Hessberg P; Crowley JN
    J Am Chem Soc; 2006 Nov; 128(47):15300-9. PubMed ID: 17117883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant adsorption on solid surfaces: recognition between heterogeneous surfaces and adsorbed surfactant aggregates.
    Zhang X; Chen B; Dong W; Wang W
    Langmuir; 2007 Jul; 23(14):7433-5. PubMed ID: 17530872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo optimization scheme to determine the physical properties of porous and nonporous solids.
    Herrera LF; Fan C; Do DD; Nicholson D
    Langmuir; 2010 Oct; 26(19):15278-88. PubMed ID: 20812694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and adsorption of a hard-core multi-Yukawa fluid confined in a slitlike pore: grand canonical Monte Carlo simulation and density functional study.
    Yu YX; You FQ; Tang Y; Gao GH; Li YG
    J Phys Chem B; 2006 Jan; 110(1):334-41. PubMed ID: 16471540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.