BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 15925861)

  • 1. BAPTA induces frequency shifts in vivo of spontaneous otoacoustic emissions of the bobtail lizard.
    Manley GA; Kirk DL
    Audiol Neurootol; 2005; 10(5):248-57. PubMed ID: 15925861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink.
    Manley GA; Sienknecht U; Köppl C
    J Neurophysiol; 2004 Nov; 92(5):2685-93. PubMed ID: 15102898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long term effects of BAPTA in scala media on cochlear function.
    Sellick PM
    Hear Res; 2007 Sep; 231(1-2):13-22. PubMed ID: 17509783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does BAPTA leave outer hair cell transduction channels closed?
    Sellick PM; Kirk DL; Patuzzi R; Robertson D
    Hear Res; 2007 Feb; 224(1-2):84-92. PubMed ID: 17222995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of injected AC and DC currents on spontaneous otoacoustic emissions in the bobtail lizard.
    Manley GA; Kirk DL
    J Assoc Res Otolaryngol; 2002 Jun; 3(2):200-8. PubMed ID: 12162369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous otoacoustic emissions in the bobtail lizard. III: Temperature effects.
    Manley GA; Köppl C
    Hear Res; 1994 Jan; 72(1-2):171-80. PubMed ID: 8150733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae.
    Manley GA
    Hear Res; 2009 Sep; 255(1-2):58-66. PubMed ID: 19539017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency Shifts in a Local Oscillator Model for the Generation of Spontaneous Otoacoustic Emissions by the Lizard Ear.
    Wit HP; Bell A
    Audiol Neurootol; 2023; 28(3):183-193. PubMed ID: 36626887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.
    Wit HP; van Dijk P; Manley GA
    J Acoust Soc Am; 2012 Nov; 132(5):3273-9. PubMed ID: 23145611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of BAPTA and 4AP in scala media on transduction and cochlear gain.
    Sellick PM; Robertson D; Patuzzi R
    Hear Res; 2006 Jan; 211(1-2):7-15. PubMed ID: 16343830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous otoacoustic emissions in monitor lizards.
    Manley GA
    Hear Res; 2004 Mar; 189(1-2):41-57. PubMed ID: 14987751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear.
    Vilfan A; Duke T
    Biophys J; 2008 Nov; 95(10):4622-30. PubMed ID: 18689448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells.
    Ricci AJ; Fettiplace R
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):111-24. PubMed ID: 9174998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA
    Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency shift of individual spontaneous otoacoustic emissions in preterm infants.
    Brienesse P; Anteunis LJ; Maertzdorf WJ; Blanco CE; Manni JJ
    Pediatr Res; 1997 Oct; 42(4):478-83. PubMed ID: 9380439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and properties of stereociliary link types in hair cells of the mouse cochlea.
    Goodyear RJ; Marcotti W; Kros CJ; Richardson GP
    J Comp Neurol; 2005 Apr; 485(1):75-85. PubMed ID: 15776440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Otoacoustic emissions, hair cells, and myosin motors.
    Manley GA; Gallo L
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1049-55. PubMed ID: 9265753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors.
    Goodyear R; Richardson G
    J Neurosci; 1999 May; 19(10):3761-72. PubMed ID: 10234008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions.
    Drexl M; Henke J; Kössl M
    Hear Res; 2004 Aug; 194(1-2):135-42. PubMed ID: 15276684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.