BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15925896)

  • 41. Desynchronising effect of the endothelium on intracellular Ca2+ concentration dynamics in vascular smooth muscle cells of rat mesenteric arteries.
    Sell M; Boldt W; Markwardt F
    Cell Calcium; 2002 Sep; 32(3):105-20. PubMed ID: 12208231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recruitment of smooth muscle cells and arterial vasomotion.
    Lamboley M; Schuster A; Bény JL; Meister JJ
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H562-9. PubMed ID: 12574002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc kinase-dependent connexin43 phosphorylation.
    Hangaard L; Bouzinova EV; Staehr C; Dam VS; Kim S; Xie Z; Aalkjaer C; Matchkov VV
    Am J Physiol Cell Physiol; 2017 Apr; 312(4):C385-C397. PubMed ID: 28122732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40.
    Haddock RE; Grayson TH; Brackenbury TD; Meaney KR; Neylon CB; Sandow SL; Hill CE
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2047-56. PubMed ID: 16815985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase resetting of arterial vasomotion by burst stimulation of perivascular nerves.
    Borovik A; Golubinskaya V; Tarasova O; Aalkjaer C; Nilsson H
    J Vasc Res; 2005; 42(2):165-73. PubMed ID: 15767763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of glyceryltrinitrate and 8-Br-cGMP on tension and phosphorylase a activity in vascular smooth muscle.
    Axelsson KL; Karlsson JO; Pettersson G
    Acta Pharmacol Toxicol (Copenh); 1985 Oct; 57(4):227-33. PubMed ID: 3002125
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A model of smooth muscle cell synchronization in the arterial wall.
    Jacobsen JC; Aalkjaer C; Nilsson H; Matchkov VV; Freiberg J; Holstein-Rathlou NH
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H229-37. PubMed ID: 17369467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effect of hypoxia and carbon monoxide on rat pulmonary arterial smooth muscle cell].
    Wang G; Qian G; Mao B
    Zhonghua Nei Ke Za Zhi; 2000 Oct; 39(10):682-5. PubMed ID: 11374176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation.
    Mulvany MJ; Nilsson H; Flatman JA
    J Physiol; 1982 Nov; 332():363-73. PubMed ID: 7153932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries.
    VanBavel E; Mulvany MJ
    J Physiol; 1994 May; 477(Pt 1):103-15. PubMed ID: 8071877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PDE1A inhibition elicits cGMP-dependent relaxation of rat mesenteric arteries.
    Khammy MM; Dalsgaard T; Larsen PH; Christoffersen CT; Clausen D; Rasmussen LK; Folkersen L; Grunnet M; Kehler J; Aalkjaer C; Nielsen J
    Br J Pharmacol; 2017 Nov; 174(22):4186-4198. PubMed ID: 28910498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple factors influence calcium synchronization in arterial vasomotion.
    Kapela A; Parikh J; Tsoukias NM
    Biophys J; 2012 Jan; 102(2):211-20. PubMed ID: 22339857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium dynamics and vasomotion in rat mesenteric arteries.
    Schuster A; Lamboley M; Grange C; Oishi H; Bény JL; Stergiopulos N; Meister JJ
    J Cardiovasc Pharmacol; 2004 Apr; 43(4):539-48. PubMed ID: 15085065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium dynamics and vasomotion in arteries subject to isometric, isobaric, and isotonic conditions.
    Koenigsberger M; Sauser R; Seppey D; Bény JL; Meister JJ
    Biophys J; 2008 Sep; 95(6):2728-38. PubMed ID: 18586845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adrenergic stimulation of rat resistance arteries affects Ca(2+) sparks, Ca(2+) waves, and Ca(2+) oscillations.
    Mauban JR; Lamont C; Balke CW; Wier WG
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2399-405. PubMed ID: 11299247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intercellular calcium waves are associated with the propagation of vasomotion along arterial strips.
    Seppey D; Sauser R; Koenigsberger M; Bény JL; Meister JJ
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H488-96. PubMed ID: 19966061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Modulatory Effect of Ischemia and Reperfusion on Arginine Vasopressin-Induced Arterial Reactions.
    Szadujkis-Szadurska K; Malinowski B; Piotrowska M; Grześk G; Wiciński M; Gajdus M
    Biomed Res Int; 2016; 2016():3679048. PubMed ID: 27563664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular and Ionic Mechanisms of Arterial Vasomotion.
    Cole WC; Gordon GR; Braun AP
    Adv Exp Med Biol; 2019; 1124():297-312. PubMed ID: 31183832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nongenomic response to aldosterone.
    Osanai T; Yamada M; Okumura K
    Hypertension; 2011 Aug; 58(2):e3; author reply e4. PubMed ID: 21646598
    [No Abstract]   [Full Text] [Related]  

  • 60. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells.
    Aalkjaer C; Nilsson H
    Br J Pharmacol; 2005 Mar; 144(5):605-16. PubMed ID: 15678091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.