These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15926092)

  • 41. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education.
    Torres K; Staśkiewicz G; Śnieżyński M; Drop A; Maciejewski R
    Folia Morphol (Warsz); 2011 Feb; 70(1):1-4. PubMed ID: 21604245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of scaffolds for tissue engineering by benchtop-magnetic resonance imaging.
    Nitzsche H; Metz H; Lochmann A; Bernstein A; Hause G; Groth T; Mäder K
    Tissue Eng Part C Methods; 2009 Sep; 15(3):513-21. PubMed ID: 19191523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Computer aided design and computer aided manufacture of sacrificial pattern of removable partial denture framework].
    Wu L; Lü PJ; Wang Y; Ai HJ; Dong DY
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2006 Jul; 41(7):432-5. PubMed ID: 17067464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic aneurysms.
    Weigang E; Kari FA; Beyersdorf F; Luehr M; Etz CD; Frydrychowicz A; Harloff A; Markl M
    Eur J Cardiothorac Surg; 2008 Jul; 34(1):11-6. PubMed ID: 18515137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fibrin: a natural biodegradable scaffold in vascular tissue engineering.
    Shaikh FM; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Cells Tissues Organs; 2008; 188(4):333-46. PubMed ID: 18552484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computer-aided tissue engineering of a human vertebral body.
    Wettergreen MA; Bucklen BS; Sun W; Liebschner MA
    Ann Biomed Eng; 2005 Oct; 33(10):1333-43. PubMed ID: 16240082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Soft tissue rapid prototyping in neurosurgery.
    Vloeberghs M; Hatfield F; Daemi F; Dickens P
    Comput Aided Surg; 1998; 3(2):95-7. PubMed ID: 9784958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combination of unicuspid aortic valve, aortic coarctation, and aberrant right subclavian artery in a child: MR imaging and CTA findings.
    Dursun M; Yilmaz S; Sayin OA; Ugurlucan M; Ucar A; Yekeler E; Tunaci A
    Cardiovasc Intervent Radiol; 2007; 30(3):547-9. PubMed ID: 17278040
    [No Abstract]   [Full Text] [Related]  

  • 49. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of an orbital prosthesis using a noncontact three-dimensional digitizer and rapid-prototyping system.
    Yoshioka F; Ozawa S; Okazaki S; Tanaka Y
    J Prosthodont; 2010 Dec; 19(8):598-600. PubMed ID: 21129080
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellular control of tissue architectures using a three-dimensional tissue fabrication technique.
    Tsuda Y; Shimizu T; Yamato M; Kikuchi A; Sasagawa T; Sekiya S; Kobayashi J; Chen G; Okano T
    Biomaterials; 2007 Nov; 28(33):4939-46. PubMed ID: 17709135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aneurysm hybrid treatment by simultaneous replacement of ascending aorta and aortic arch and endoluminal stenting of the descending aorta.
    Riess FC; Krankenberg H; Tübler T; Danne M
    Heart Surg Forum; 2006; 9(1):E530-2. PubMed ID: 16387670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds.
    Rajagopalan S; Robb RA
    Med Image Anal; 2006 Oct; 10(5):693-712. PubMed ID: 16890007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of rapid prototyping in prosthetic auricular restoration.
    Turgut G; Sacak B; Kiran K; Bas L
    J Craniofac Surg; 2009 Mar; 20(2):321-5. PubMed ID: 19276832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid prototyping of compliant human aortic roots for assessment of valved stents.
    Kalejs M; von Segesser LK
    Interact Cardiovasc Thorac Surg; 2009 Feb; 8(2):182-6. PubMed ID: 19036761
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering.
    Zhang H; Hutmacher DW; Chollet F; Poo AN; Burdet E
    Macromol Biosci; 2005 Jun; 5(6):477-89. PubMed ID: 15968638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preliminary results by flow-sensitive magnetic resonance imaging after Tiron David I procedure with an anatomically shaped ascending aortic graft.
    Frydrychowicz A; Berger A; Stalder AF; Markl M
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):155-8. PubMed ID: 19386661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hypothermic circulatory arrest through a left thoracotomy in a 12-year-old child with aortic coarctation.
    Ueda T; Taguchi S; Inoue Y; Kashima I
    Interact Cardiovasc Thorac Surg; 2007 Feb; 6(1):85-6. PubMed ID: 17669776
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mid-term results of freestyle aortic stentless bioprosthetic valve: clinical impact of quantitative analysis of in-vivo three-dimensional flow velocity profile by magnetic resonance imaging.
    Matsue H; Sawa Y; Matsumiya G; Matsuda H; Hamada S
    J Heart Valve Dis; 2005 Sep; 14(5):630-6. PubMed ID: 16245502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.