BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 15926549)

  • 41. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming.
    Pack EC; Lee SH; Kim CH; Lim CH; Sung DG; Kim MH; Park KH; Lim KM; Choi DW; Kim SW
    J Toxicol Environ Health A; 2014; 77(22-24):1477-90. PubMed ID: 25343296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries.
    Buck CS; Hammerschmidt CR; Bowman KL; Gill GA; Landing WM
    Environ Sci Technol; 2015 Dec; 49(24):13992-9. PubMed ID: 26505206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon.
    Nagorski SA; Engstrom DR; Hudson JP; Krabbenhoft DP; Hood E; DeWild JF; Aiken GR
    Environ Pollut; 2014 Jan; 184():62-72. PubMed ID: 24035911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ecological and biological determinants of methylmercury accumulation in tropical coastal fish.
    Seixas TG; Moreira I; Malm O; Kehrig HA
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1142-50. PubMed ID: 22718146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems.
    St Louis VL; Rudd JW; Kelly CA; Hall BD; Rolfhus KR; Scott KJ; Lindberg SE; Dong W
    Environ Sci Technol; 2001 Aug; 35(15):3089-98. PubMed ID: 11508309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish.
    Peng X; Liu F; Wang WX
    Environ Toxicol Chem; 2016 Aug; 35(8):2074-83. PubMed ID: 26756981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization.
    Wang F; Macdonald RW; Armstrong DA; Stern GA
    Environ Sci Technol; 2012 Nov; 46(21):11821-8. PubMed ID: 23025753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.
    Heimbürger LE; Sonke JE; Cossa D; Point D; Lagane C; Laffont L; Galfond BT; Nicolaus M; Rabe B; van der Loeff MR
    Sci Rep; 2015 May; 5():10318. PubMed ID: 25993348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis.
    Lavoie RA; Jardine TD; Chumchal MM; Kidd KA; Campbell LM
    Environ Sci Technol; 2013; 47(23):13385-94. PubMed ID: 24151937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source.
    Riscassi A; Miller C; Brooks S
    Environ Toxicol Chem; 2016 Jun; 35(6):1386-400. PubMed ID: 26574732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton.
    Klaus JE; Hammerschmidt CR; Costello DM; Burton GA
    Environ Toxicol Chem; 2016 Jul; 35(7):1759-65. PubMed ID: 26636557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluating the potential efficacy of mercury total maximum daily loads on aqueous methylmercury levels in four coastal watersheds.
    Rothenberg SE; Ambrose RF; Jay JA
    Environ Sci Technol; 2008 Aug; 42(15):5400-6. PubMed ID: 18754452
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.
    Marvin-Dipasquale M; Lutz MA; Brigham ME; Krabbenhoft DP; Aiken GR; Orem WH; Hall BD
    Environ Sci Technol; 2009 Apr; 43(8):2726-32. PubMed ID: 19475941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna.
    Tsui MT; Wang WX
    Environ Sci Technol; 2004 Feb; 38(3):808-16. PubMed ID: 14968868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential effects of mercury on threatened California black rails.
    Tsao DC; Miles AK; Takekawa JY; Woo I
    Arch Environ Contam Toxicol; 2009 Feb; 56(2):292-301. PubMed ID: 18648717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire.
    Mason RP; Baumann Z; Hansen G; Yao KM; Coulibaly M; Coulibaly S
    Sci Total Environ; 2019 May; 665():1158-1167. PubMed ID: 30893747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.
    Strickman RJ; Mitchell CPJ
    Environ Pollut; 2017 Feb; 221():326-334. PubMed ID: 27939209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau.
    Zhang Q; Pan K; Kang S; Zhu A; Wang WX
    Environ Sci Technol; 2014 May; 48(9):5220-8. PubMed ID: 24708089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.