These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15926570)

  • 1. Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech Republic.
    Laudon H; Hruska J; Köhler S; Krám P
    Environ Sci Technol; 2005 May; 39(9):3197-202. PubMed ID: 15926570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model prognoses for future acidification recovery of surface waters in norway using long-term monitoring data.
    Larssen T
    Environ Sci Technol; 2005 Oct; 39(20):7970-9. PubMed ID: 16295863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The episodic acidification of small streams in the spring flood period of industrial polar region, Russia.
    Moiseenko T; Kudrjavzeva L; Rodyshkin I
    Chemosphere; 2001 Jan; 42(1):45-50. PubMed ID: 11142916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery from acidification in central Europe--observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic.
    Hruska J; Moldan F; Krám P
    Environ Pollut; 2002; 120(2):261-74. PubMed ID: 12395838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate variability and forecasting surface water recovery from acidification: modelling drought-induced sulphate release from wetlands.
    Aherne J; Larssen T; Cosby BJ; Dillon PJ
    Sci Total Environ; 2006 Jul; 365(1-3):186-99. PubMed ID: 16616319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of streams from episodic acidification in northern Sweden.
    Laudon H; Hemond HF
    Environ Sci Technol; 2002 Mar; 36(5):921-8. PubMed ID: 11918018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spring snowmelt and mercury export from a forested catchment in the Czech Republic, Central Europe.
    Navrátil T; Rohovec J; Hojdová M; Vach M
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):670-5. PubMed ID: 21505795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial heterogeneity of the spring flood acid pulse in a boreal stream network.
    Buffam I; Laudon H; Seibert J; Mörth CM; Bishop K
    Sci Total Environ; 2008 Dec; 407(1):708-22. PubMed ID: 18940271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling long-term stream acidification in the chemically heterogeneous Upper Severn catchment, Mid-Wales.
    Hill T; Whitehead P; Neal C
    Sci Total Environ; 2002 Mar; 286(1-3):215-32. PubMed ID: 11886094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stream water hydrochemistry as an indicator of carbon flow paths in Finnish peatland catchments during a spring snowmelt event.
    Dinsmore KJ; Billett MF; Dyson KE; Harvey F; Thomson AM; Piirainen S; Kortelainen P
    Sci Total Environ; 2011 Oct; 409(22):4858-67. PubMed ID: 21885090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.
    Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D
    Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and FJORD system.
    Kaste Ø; Wright RF; Barkved LJ; Bjerkeng B; Engen-Skaugen T; Magnusson J; Saelthun NR
    Sci Total Environ; 2006 Jul; 365(1-3):200-22. PubMed ID: 16580049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term predictions of ecosystem acidification and recovery.
    Skeffington RA; Cosby BJ; Whitehead PG
    Sci Total Environ; 2016 Oct; 568():381-390. PubMed ID: 27304372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landscape control of stream water aluminum in a boreal catchment during spring flood.
    Cory N; Buffam I; Laudon H; Köhler S; Bishop K
    Environ Sci Technol; 2006 Jun; 40(11):3494-500. PubMed ID: 16786685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005.
    Lawrence GB; Roy KM; Baldigo BP; Simonin HA; Capone SB; Sutherland JW; Nierzwicki-Bauer SA; Boylen CW
    J Environ Qual; 2008; 37(6):2264-74. PubMed ID: 18948480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate-induced episodic acidification of streams in central ontario.
    Laudon H; Dillon PJ; Eimers MC; Semkin RG; Jeffries DS
    Environ Sci Technol; 2004 Nov; 38(22):6009-15. PubMed ID: 15573600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-pollution emission control in China: impacts on soil acidification recovery and constraints due to drought.
    Duan L; Liu J; Xin Y; Larssen T
    Sci Total Environ; 2013 Oct; 463-464():1031-41. PubMed ID: 23891996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of the North Atlantic Oscillation (NAO) for sea-salt episodes and acidification-related effects in Norwegian rivers.
    Hindar A; Tørseth K; Henriksen A; Orsolini Y
    Environ Sci Technol; 2004 Jan; 38(1):26-33. PubMed ID: 14740713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-dependent temporal variations in stream water geochemistry.
    Nagorski SA; Moore IN; McKinnon TE; Smith DB
    Environ Sci Technol; 2003 Mar; 37(5):859-64. PubMed ID: 12666913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.
    McHale MR; Burns DA; Siemion J; Antidormi MR
    Environ Pollut; 2017 Oct; 229():607-620. PubMed ID: 28689149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.