These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15926591)

  • 21. Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions.
    Boopathy R
    Bioresour Technol; 2003 Jan; 86(2):171-5. PubMed ID: 12653283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors.
    Kazumi J; Häggblom MM; Young LY
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):929-36. PubMed ID: 7576560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced anoxic bioremediation of PAHs-contaminated sediment.
    Lu XY; Li B; Zhang T; Fang HH
    Bioresour Technol; 2012 Jan; 104():51-8. PubMed ID: 22104099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The responding and ecological contribution of biofilm-leaves of submerged macrophytes on phenanthrene dissipation in sediments.
    Zhao Z; Qin Z; Xia L; Zhang D; Mela SM; Li Y
    Environ Pollut; 2019 Mar; 246():357-365. PubMed ID: 30572298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of sediment resuspension on the degradation of phenanthrene in flow-through microcosms.
    LeBlanc LA; Gulnick JD; Brownawell BJ; Taylor GT
    Mar Environ Res; 2006 Mar; 61(2):202-23. PubMed ID: 16309739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments.
    Canfield DE
    Deep Sea Res A; 1989; 36(1):121-38. PubMed ID: 11542177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid removal of nitrate and sulfate in freshwater wetland sediments.
    Whitmire SL; Hamilton SK
    J Environ Qual; 2005; 34(6):2062-71. PubMed ID: 16221826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic biodegradation of ethylthionocarbamate by the mixed bacteria under various electron acceptor conditions.
    Chen S; Gong W; Mei G; Han W
    Bioresour Technol; 2011 Nov; 102(22):10772-5. PubMed ID: 21963904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH.
    Rogers SW; Ong SK; Moorman TB
    Chemosphere; 2007 Nov; 69(10):1563-73. PubMed ID: 17617439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial bioremediation of produced water under different redox conditions in marine sediments.
    Su Q; Albani G; Sundberg J; Andersen HR; Nielsen TG; Thamdrup B; Jensen MM
    Water Res; 2022 Jun; 218():118428. PubMed ID: 35461099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary.
    Zhuang L; Tang Z; Ma J; Yu Z; Wang Y; Tang J
    Front Microbiol; 2019; 10():374. PubMed ID: 30881355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway.
    Tsai JC; Kumar M; Lin JG
    J Hazard Mater; 2009 May; 164(2-3):847-55. PubMed ID: 18848395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic phenanthrene biodegradation by a newly isolated sulfate-reducer, strain PheS1, and exploration of the biotransformation pathway.
    Zhang Z; Guo H; Sun J; Gong X; Wang C; Wang H
    Sci Total Environ; 2021 Nov; 797():149148. PubMed ID: 34311378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate.
    Cunningham JA; Rahme H; Hopkins GD; Lebron C; Reinhard M
    Environ Sci Technol; 2001 Apr; 35(8):1663-70. PubMed ID: 11329718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of anaerobic biodegradation of phenanthrene by a sulfate-dependent Geobacter sulfurreducens strain PheS2.
    Zhang Z; Sun J; Guo H; Gong X; Wang C; Wang H
    J Hazard Mater; 2021 May; 409():124522. PubMed ID: 33229262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of redox conditions on MTBE biodegradation in surface water sediments.
    Bradley PM; Chapelle FH; Landmeyer JE
    Environ Sci Technol; 2001 Dec; 35(23):4643-7. PubMed ID: 11770765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions.
    Elsgaard L
    Chemosphere; 2010 May; 79(10):1003-9. PubMed ID: 20378150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals.
    Dell'Anno A; Beolchini F; Gabellini M; Rocchetti L; Pusceddu A; Danovaro R
    Mar Pollut Bull; 2009 Dec; 58(12):1808-14. PubMed ID: 19740495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.