These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15926595)

  • 21. Examination of hydrophobic contaminant adsorption in mineral micropores with grand canonical Monte Carlo simulations.
    Luo J; Farrell J
    Environ Sci Technol; 2003 May; 37(9):1775-82. PubMed ID: 12775048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the IAS theory combining to a three compartments description of natural organic matter to the adsorption of atrazine or diuron on activated carbon.
    Baudu M; Raveau D; Guibaud G
    Environ Technol; 2004 Jul; 25(7):763-73. PubMed ID: 15346857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.
    Nam SW; Choi DJ; Kim SK; Her N; Zoh KD
    J Hazard Mater; 2014 Apr; 270():144-52. PubMed ID: 24572271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon.
    Jahandar Lashaki M; Fayaz M; Niknaddaf S; Hashisho Z
    J Hazard Mater; 2012 Nov; 241-242():154-63. PubMed ID: 23044198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of BTEX, MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite.
    Aivalioti M; Pothoulaki D; Papoulias P; Gidarakos E
    J Hazard Mater; 2012 Mar; 207-208():136-46. PubMed ID: 21571423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite.
    Hung HW; Lin TF
    J Hazard Mater; 2006 Jul; 135(1-3):210-7. PubMed ID: 16386837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.
    Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B
    J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorption of organic compounds to activated carbons. Evaluation of isotherm models.
    Pikaar I; Koelmans AA; van Noort PC
    Chemosphere; 2006 Dec; 65(11):2343-51. PubMed ID: 16782170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of naphthalene onto the carbon adsorbent from waste ion exchange resin: equilibrium and kinetic characteristics.
    Long C; Lu J; Li A; Hu D; Liu F; Zhang Q
    J Hazard Mater; 2008 Feb; 150(3):656-61. PubMed ID: 17570583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption.
    Yu JJ; Chou SY
    Chemosphere; 2000 Aug; 41(3):371-8. PubMed ID: 11057599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The application of silicalite-1/fly ash cenosphere (S/FAC) zeolite composite for the adsorption of methyl tert-butyl ether (MTBE).
    Lu J; Xu F; Wang D; Huang J; Cai W
    J Hazard Mater; 2009 Jun; 165(1-3):120-5. PubMed ID: 19036514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.
    Mohamed EF; Andriantsiferana C; Wilhelm AM; Delmas H
    Environ Technol; 2011; 32(11-12):1325-36. PubMed ID: 21970174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fenton-driven chemical regeneration of MTBE-spent granular activated carbon--a pilot study.
    Huling SG; Kan E; Caldwell C; Park S
    J Hazard Mater; 2012 Feb; 205-206():55-62. PubMed ID: 22260751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of hierarchically porous carbon from cellulose as highly efficient adsorbent for the removal of organic dyes from aqueous solutions.
    Hao Y; Wang Z; Wang Z; He Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():298-303. PubMed ID: 30390528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.
    Lee KJ; Miyawaki J; Shiratori N; Yoon SH; Jang J
    J Hazard Mater; 2013 Sep; 260():82-8. PubMed ID: 23747466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites.
    Li J; Werth CJ
    Environ Sci Technol; 2001 Feb; 35(3):568-74. PubMed ID: 11351730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstruction of adsorption potential in Polanyi-based models and application to various adsorbents.
    Pan B; Zhang H
    Environ Sci Technol; 2014 Jun; 48(12):6772-9. PubMed ID: 24815932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution.
    Beless B; Rifai HS; Rodrigues DF
    Environ Sci Technol; 2014 Sep; 48(17):10372-9. PubMed ID: 25110809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses.
    Mall ID; Srivastava VC; Agarwal NK; Mishra IM
    Chemosphere; 2005 Oct; 61(4):492-501. PubMed ID: 15869781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.