These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 15926807)

  • 1. Enantioselective recognition of carboxylates: a receptor derived from alpha-aminoxy acids functions as a chiral shift reagent for carboxylic acids.
    Yang D; Li X; Fan YF; Zhang DW
    J Am Chem Soc; 2005 Jun; 127(22):7996-7. PubMed ID: 15926807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New macrocyclic compound as chiral shift reagent for carboxylic acids.
    Ma F; Ai L; Shen X; Zhang C
    Org Lett; 2007 Jan; 9(1):125-7. PubMed ID: 17192101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.
    Naziroglu HN; Durmaz M; Bozkurt S; Sirit A
    Chirality; 2011 Jul; 23(6):463-71. PubMed ID: 21472784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern-based recognition for determination of enantiomeric excess, using chiral auxiliary induced chemical shift perturbation NMR.
    Lei X; Liu L; Chen X; Yu X; Ding L; Zhang A
    Org Lett; 2010 Jun; 12(11):2540-3. PubMed ID: 20441202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of chiral calix[4]arenes bearing aminonaphthol moieties and their use in the enantiomeric recognition of carboxylic acids.
    Durmaz M; Yilmaz M; Sirit A
    Org Biomol Chem; 2011 Jan; 9(2):571-80. PubMed ID: 21063630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives.
    Wolf C; Liu S; Reinhardt BC
    Chem Commun (Camb); 2006 Oct; (40):4242-4. PubMed ID: 17031445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective recognition of α-hydroxycarboxylic acids and N-Boc-amino acids by counterion-displacement assays with a chiral nickel(II) complex.
    He X; Zhang Q; Wang W; Lin L; Liu X; Feng X
    Org Lett; 2011 Feb; 13(4):804-7. PubMed ID: 21247141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sweet anion receptors: recognition of chiral carboxylate anions by D-glucuronic-acid-decorated diindolylmethane.
    Granda JM; Jurczak J
    Org Lett; 2013 Sep; 15(18):4730-3. PubMed ID: 23988260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spirocyclic zwitterionic lambda5Si-silicates with two bidentate ligands derived from alpha-amino acids or alpha-hydroxycarboxylic acids: synthesis, structure, and stereodynamics.
    Tacke R; Bertermann R; Burschka C; Dragota S; Penka M; Richter I
    J Am Chem Soc; 2004 Nov; 126(44):14493-505. PubMed ID: 15521770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent chiral chemosensor for the recognition of the two enantiomers of chiral carboxylates.
    Li Y; Tamilavan V; Hyun MH
    Chirality; 2012 May; 24(5):406-11. PubMed ID: 22514035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-aminoxy acids: new possibilities from foldamers to anion receptors and channels.
    Li X; Wu YD; Yang D
    Acc Chem Res; 2008 Oct; 41(10):1428-38. PubMed ID: 18785763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral shift reagent for amino acids based on resonance-assisted hydrogen bonding.
    Chin J; Kim DC; Kim HJ; Panosyan FB; Kim KM
    Org Lett; 2004 Jul; 6(15):2591-3. PubMed ID: 15255698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective sensing of chiral carboxylic acids.
    Mei X; Wolf C
    J Am Chem Soc; 2004 Nov; 126(45):14736-7. PubMed ID: 15535695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the enantiomeric excess of chiral carboxylic acids by 31P NMR with phosphorylated derivatizing agents from C2-symmetrical diamines containing the (S)-alpha-phenylethyl group.
    Mastranzo VM; Quintero L; de Parrodi CA
    Chirality; 2007 Jun; 19(6):503-7. PubMed ID: 17437261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane alpha-amino acids.
    Lindsay VN; Lin W; Charette AB
    J Am Chem Soc; 2009 Nov; 131(45):16383-5. PubMed ID: 19860407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of enantiomeric excess and concentration of unprotected amino acids, amines, amino alcohols, and carboxylic acids by competitive binding assays with a chiral scandium complex.
    Mei X; Wolf C
    J Am Chem Soc; 2006 Oct; 128(41):13326-7. PubMed ID: 17031923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a novel inherently chiral calix[4]arene for chiral molecular recognition.
    Shirakawa S; Moriyama A; Shimizu S
    Org Lett; 2007 Aug; 9(16):3117-9. PubMed ID: 17616144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chiral bisthiourea as a chiral solvating agent for carboxylic acids in the presence of DMAP.
    Bian G; Fan H; Yang S; Yue H; Huang H; Zong H; Song L
    J Org Chem; 2013 Sep; 78(18):9137-42. PubMed ID: 24050150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel amine receptor based on the binol scaffold functions as a highly effective chiral shift reagent for carboxylic acids.
    Ma Q; Ma M; Tian H; Ye X; Xiao H; Chen LH; Lei X
    Org Lett; 2012 Dec; 14(23):5813-5. PubMed ID: 23170807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Chiral beta 3-aminoxy peptides.
    Yang D; Zhang YH; Li B; Zhang DW
    J Org Chem; 2004 Oct; 69(22):7577-81. PubMed ID: 15497984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.