BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15926833)

  • 1. Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme ph conditions.
    Frenkel-Mullerad H; Avnir D
    J Am Chem Soc; 2005 Jun; 127(22):8077-81. PubMed ID: 15926833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Modulation of membrane activity of an enzyme in reversed micelle system with a change of media pH (using alkaline phosphatase as an example)].
    Nametkin SN; LDadaian AK; Kabanov AV; Levashov AV
    Bioorg Khim; 1992 Jun; 18(6):777-83. PubMed ID: 1384508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.
    Hassan SS; Sayour HE; Kamel AH
    Anal Chim Acta; 2009 Apr; 640(1-2):75-81. PubMed ID: 19362623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline phosphatase from calf intestinal mucosa in reversed micelle systems: modulation of enzyme membrane activity by pH variation.
    Nametkin SN; Kabanov AV; Levashov AV
    Biochem Mol Biol Int; 1993 Jan; 29(1):103-11. PubMed ID: 7683943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid and alkaline phosphatase activities of a fraction isolated from Parawixia bistriata spider venom.
    Rodrigues MC; Guimarães LH; Liberato JL; de Lourdes Teixeira de Moraes Polizeli M; dos Santos WF
    Toxicon; 2006 Jun; 47(8):854-8. PubMed ID: 16730046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsolubilization of toluene and acetophenone as a function of surfactant adsorption.
    Asvapathanagul P; Malakul P; O'Haver J
    J Colloid Interface Sci; 2005 Dec; 292(2):305-11. PubMed ID: 15964577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Regulation of catalytic properties of enzymes in "inverse micelles"].
    Kotrikadze NG; Lomsadze MA; Tsaridze MA; Dzhishkariani OS; Levashov AV
    Biofizika; 1999; 44(2):231-5. PubMed ID: 10418674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline and acid phosphatases in bone cells serve as phosphohydrolases at physiological pH in vivo: a histochemical implication.
    Nakano Y; Kawamoto T; Oda K; Takano Y
    Connect Tissue Res; 2003; 44 Suppl 1():219-22. PubMed ID: 12952201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acid phosphatase from Manihot glaziovii as an alternative to alkaline Phosphatase for molecular cloning experiments.
    Tham SC; Lim SH; Yeoh HH
    Biotechnol Lett; 2005 Dec; 27(23-24):1865-8. PubMed ID: 16328981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of acid phosphatase in reverse micellar system by lipids additives: structural aspects.
    Kudryashova EV; Bronza VL; Vinogradov AA; Kamyshny A; Magdassi S; Levashov AV
    J Colloid Interface Sci; 2011 Jan; 353(2):490-7. PubMed ID: 20974470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective precipitation and recovery of xylanase using surfactant and organic solvent.
    Shin YO; Wahnon D; Weber ME; Vera JH
    Biotechnol Bioeng; 2004 Jun; 86(6):698-705. PubMed ID: 15137082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive enzyme-metal composites: the entrapment of acid phosphatase within gold and silver.
    Ben-Knaz R; Avnir D
    Biomaterials; 2009 Mar; 30(7):1263-7. PubMed ID: 19091400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium.
    Marhuenda-Egea FC; Piera-Velázquez S; Cadenas C; Cadenas E
    J Biotechnol; 2001 May; 87(3):255-61. PubMed ID: 11334667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transfer studies of cell permeabilization and recovery of alkaline phosphatase from Escherichia coli by reverse micellar solutions.
    Bansal-Mutalik R; Gaikar VG
    Biotechnol Prog; 2004; 20(4):1121-7. PubMed ID: 15296438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of trypsin and of acid phosphatase immobilized in sol-gel glass matrices.
    Shtelzer S; Rappoport S; Avnir D; Ottolenghi M; Braun S
    Biotechnol Appl Biochem; 1992 Jun; 15(3):227-35. PubMed ID: 1388818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and biochemical characterization of lysosomal acid phosphatases (EC 3.1.3.2) from blood stream forms, Trypanosoma brucei brucei.
    Amlabu E; Nok AJ; Sallau AB
    Parasitol Int; 2009 Sep; 58(3):238-42. PubMed ID: 19442761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effect of pH on spreading of surfactant solutions on hydrophobic surfaces.
    Radulovic J; Sefiane K; Shanahan ME
    J Colloid Interface Sci; 2009 Apr; 332(2):497-504. PubMed ID: 19185880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent single walled carbon nanotube/silica composite materials.
    Satishkumar BC; Doorn SK; Baker GA; Dattelbaum AM
    ACS Nano; 2008 Nov; 2(11):2283-90. PubMed ID: 19206394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate.
    Chen ZX; Deng SP; Li XK
    J Colloid Interface Sci; 2008 Feb; 318(2):389-96. PubMed ID: 18005979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption density of spherical cetyltrimethylammonium bromide (CTAB) micelles at a silica/silicon surface.
    Paruchuri VK; Fa K; Moudgil BM; Miller JD
    Appl Spectrosc; 2005 May; 59(5):668-72. PubMed ID: 15969813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.