BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15926896)

  • 1. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements.
    Abraham EG; Donnelly-Doman M; Fujioka H; Ghosh A; Moreira L; Jacobs-Lorena M
    Insect Mol Biol; 2005 Jun; 14(3):271-9. PubMed ID: 15926896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae.
    Devenport M; Fujioka H; Jacobs-Lorena M
    Insect Mol Biol; 2004 Aug; 13(4):349-58. PubMed ID: 15271206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of proteins in the midgut of Anopheles albimanus infected with Plasmodium berghei.
    Serrano-Pinto V; Acosta-Pérez M; Luviano-Bazán D; Hurtado-Sil G; Batista CV; Martínez-Barnetche J; Lánz-Mendoza H
    Insect Biochem Mol Biol; 2010 Oct; 40(10):752-8. PubMed ID: 20692341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.
    Yoshida S; Shimada Y; Kondoh D; Kouzuma Y; Ghosh AK; Jacobs-Lorena M; Sinden RE
    PLoS Pathog; 2007 Dec; 3(12):e192. PubMed ID: 18159942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes.
    Jacobs-Lorena M
    J Vector Borne Dis; 2003; 40(3-4):73-7. PubMed ID: 15119075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes.
    Nolan T; Petris E; Müller HM; Cronin A; Catteruccia F; Crisanti A
    PLoS One; 2011 Feb; 6(2):e16471. PubMed ID: 21326609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions.
    Xu X; Dong Y; Abraham EG; Kocan A; Srinivasan P; Ghosh AK; Sinden RE; Ribeiro JM; Jacobs-Lorena M; Kafatos FC; Dimopoulos G
    Mol Biochem Parasitol; 2005 Jul; 142(1):76-87. PubMed ID: 15907562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of peritrophic matrix C-type lectin (AdPMCTL) on blood-meal size in Anopheles dirus.
    Krairojananan P; Sattabongkot J; Chavalitshewinkoon-Petmitr P
    Southeast Asian J Trop Med Public Health; 2012 Sep; 43(5):1134-45. PubMed ID: 23431819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).
    Okech B; Arai M; Matsuoka H
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1113-8. PubMed ID: 16469295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite.
    Ito J; Ghosh A; Moreira LA; Wimmer EA; Jacobs-Lorena M
    Nature; 2002 May; 417(6887):452-5. PubMed ID: 12024215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic module regulates the melanization response of Anopheles to Plasmodium.
    Volz J; Müller HM; Zdanowicz A; Kafatos FC; Osta MA
    Cell Microbiol; 2006 Sep; 8(9):1392-405. PubMed ID: 16922859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitness of transgenic Anopheles stephensi mosquitoes expressing the SM1 peptide under the control of a vitellogenin promoter.
    Li C; Marrelli MT; Yan G; Jacobs-Lorena M
    J Hered; 2008; 99(3):275-82. PubMed ID: 18334506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can transgenic mosquitoes afford the fitness cost?
    Lambrechts L; Koella JC; Boëte C
    Trends Parasitol; 2008 Jan; 24(1):4-7. PubMed ID: 18164248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi.
    Lombardo F; Nolan T; Lycett G; Lanfrancotti A; Stich N; Catteruccia F; Louis C; Coluzzi M; Arcà B
    Insect Mol Biol; 2005 Apr; 14(2):207-16. PubMed ID: 15796754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Storage and secretion of Ag-Aper14, a novel peritrophic matrix protein, and Ag-Muc1 from the mosquito Anopheles gambiae.
    Devenport M; Fujioka H; Donnelly-Doman M; Shen Z; Jacobs-Lorena M
    Cell Tissue Res; 2005 Apr; 320(1):175-85. PubMed ID: 15726420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito.
    Yoshida S; Watanabe H
    Insect Mol Biol; 2006 Aug; 15(4):403-10. PubMed ID: 16907827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Close association of invading Plasmodium berghei and beta integrin in the Anopheles gambiae midgut.
    Mahairaki V; Lycett G; Sidén-Kiamos I; Sinden RE; Louis C
    Arch Insect Biochem Physiol; 2005 Sep; 60(1):13-9. PubMed ID: 16116619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals.
    Chen XG; Marinotti O; Whitman L; Jasinskiene N; James AA; Romans P
    Am J Trop Med Hyg; 2007 Jun; 76(6):1118-24. PubMed ID: 17556621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes.
    Moreira LA; Ito J; Ghosh A; Devenport M; Zieler H; Abraham EG; Crisanti A; Nolan T; Catteruccia F; Jacobs-Lorena M
    J Biol Chem; 2002 Oct; 277(43):40839-43. PubMed ID: 12167627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Anopheles gambiae adult midgut peritrophic matrix proteome.
    Dinglasan RR; Devenport M; Florens L; Johnson JR; McHugh CA; Donnelly-Doman M; Carucci DJ; Yates JR; Jacobs-Lorena M
    Insect Biochem Mol Biol; 2009 Feb; 39(2):125-34. PubMed ID: 19038338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.