These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 15927291)
1. Construction of artificially structured microbial consortia (ASMC) using dielectrophoresis: examining bacterial interactions via metabolic intermediates within environmental biofilms. Andrews JS; Mason VP; Thompson IP; Stephens GM; Markx GH J Microbiol Methods; 2006 Jan; 64(1):96-106. PubMed ID: 15927291 [TBL] [Abstract][Full Text] [Related]
2. Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation. Verduzco-Luque CE; Alp B; Stephens GM; Markx GH Biotechnol Bioeng; 2003 Jul; 83(1):39-44. PubMed ID: 12740931 [TBL] [Abstract][Full Text] [Related]
3. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm. Nancharaiah YV; Venugopalan VP; Wuertz S; Wilderer PA; Hausner M J Microbiol Methods; 2005 Feb; 60(2):179-87. PubMed ID: 15590092 [TBL] [Abstract][Full Text] [Related]
4. Metabolic commensalism and competition in a two-species microbial consortium. Christensen BB; Haagensen JA; Heydorn A; Molin S Appl Environ Microbiol; 2002 May; 68(5):2495-502. PubMed ID: 11976126 [TBL] [Abstract][Full Text] [Related]
5. Establishment of new genetic traits in a microbial biofilm community. Christensen BB; Sternberg C; Andersen JB; Eberl L; Moller S; Givskov M; Molin S Appl Environ Microbiol; 1998 Jun; 64(6):2247-55. PubMed ID: 9603843 [TBL] [Abstract][Full Text] [Related]
6. The role of rpoS on the survival of a p-nitrophenol degrading Pseudomonas putida strain in planktonic and biofilm phases. Maki ML; Lawrence JR; Swerhone GD; Leung KT Can J Microbiol; 2009 Oct; 55(10):1176-86. PubMed ID: 19935890 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. Hansen SK; Haagensen JA; Gjermansen M; Jørgensen TM; Tolker-Nielsen T; Molin S J Bacteriol; 2007 Jul; 189(13):4932-43. PubMed ID: 17468252 [TBL] [Abstract][Full Text] [Related]
8. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. Gjermansen M; Ragas P; Tolker-Nielsen T FEMS Microbiol Lett; 2006 Dec; 265(2):215-24. PubMed ID: 17054717 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351 [TBL] [Abstract][Full Text] [Related]
10. Long-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Pepi M; Minacci A; Di Cello F; Baldi F; Fani R Antonie Van Leeuwenhoek; 2003; 83(1):3-9. PubMed ID: 12755474 [TBL] [Abstract][Full Text] [Related]
11. Large scale dielectrophoretic construction of biofilms using textile technology. Abidin ZZ; Downes L; Markx GH Biotechnol Bioeng; 2007 Apr; 96(6):1222-5. PubMed ID: 17054123 [TBL] [Abstract][Full Text] [Related]
12. Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1. Herzberg M; Dosoretz CG; Kuhn J; Klein S; Green M Water Res; 2006 Aug; 40(14):2704-12. PubMed ID: 16814359 [TBL] [Abstract][Full Text] [Related]
13. Complexity of cell-cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1: metabolic commensalism, biofilm formation and quorum quenching. Seo H; Kim J; Jung J; Jin HM; Jeon CO; Park W Res Microbiol; 2012 Apr; 163(3):173-81. PubMed ID: 22202171 [TBL] [Abstract][Full Text] [Related]
14. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995 [TBL] [Abstract][Full Text] [Related]
15. A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms. Perumbakkam S; Hess TF; Crawford RL Biodegradation; 2006 Dec; 17(6):545-57. PubMed ID: 16477353 [TBL] [Abstract][Full Text] [Related]
16. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Venkata Mohan S; Falkentoft C; Venkata Nancharaiah Y; Sturm BS; Wattiau P; Wilderer PA; Wuertz S; Hausner M Bioresour Technol; 2009 Mar; 100(5):1746-53. PubMed ID: 19010662 [TBL] [Abstract][Full Text] [Related]
17. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Møller S; Sternberg C; Andersen JB; Christensen BB; Ramos JL; Givskov M; Molin S Appl Environ Microbiol; 1998 Feb; 64(2):721-32. PubMed ID: 9464414 [TBL] [Abstract][Full Text] [Related]
18. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Gilbert ES; Walker AW; Keasling JD Appl Microbiol Biotechnol; 2003 Mar; 61(1):77-81. PubMed ID: 12658518 [TBL] [Abstract][Full Text] [Related]
19. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Pamp SJ; Sternberg C; Tolker-Nielsen T Cytometry A; 2009 Feb; 75(2):90-103. PubMed ID: 19051241 [TBL] [Abstract][Full Text] [Related]
20. Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach. Cao B; Loh KC Biotechnol Bioeng; 2008 Dec; 101(6):1297-312. PubMed ID: 18980183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]