These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15927295)

  • 41. Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat.
    Hernández M; Esteve T; Pla M
    J Agric Food Chem; 2005 Sep; 53(18):7003-9. PubMed ID: 16131102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Species-specific probes for the identification of the African tsetse-transmitted trypanosomes.
    Gibson W
    Parasitology; 2009 Oct; 136(12):1501-7. PubMed ID: 19490726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification.
    Mens PF; Schoone GJ; Kager PA; Schallig HD
    Malar J; 2006 Oct; 5():80. PubMed ID: 17018138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A forensic STR profiling system for the Eurasian badger: a framework for developing profiling systems for wildlife species.
    Dawnay N; Ogden R; Thorpe RS; Pope LC; Dawson DA; McEwing R
    Forensic Sci Int Genet; 2008 Jan; 2(1):47-53. PubMed ID: 19083789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Possible unfavourable effects of using in-house components for forensic expert molecular-genetic technologies].
    Shilov IA; Kariagina AS; Ivanov PL
    Sud Med Ekspert; 2005; 48(4):20-3. PubMed ID: 16130328
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification].
    Miuge NS; Barmintseva AE; Rastorguev SM; Miuge VN; Barmintsev VA
    Genetika; 2008 Jul; 44(7):913-9. PubMed ID: 18767539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Validation of an STR peak area model.
    Cowell RG
    Forensic Sci Int Genet; 2009 Jun; 3(3):193-9. PubMed ID: 19414168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Species-specific oligonucleotides and multiplex PCR for forensic discrimination of two species of scallops, Placopecten magellanicus and Chlamys islandica.
    Marshall HD; Johnstone KA; Carr SM
    Forensic Sci Int; 2007 Mar; 167(1):1-7. PubMed ID: 16822630
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validation of the barcoding gene COI for use in forensic genetic species identification.
    Dawnay N; Ogden R; McEwing R; Carvalho GR; Thorpe RS
    Forensic Sci Int; 2007 Nov; 173(1):1-6. PubMed ID: 17300895
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [ABO blood group typing in forensic autopsies].
    Nishi K
    Nihon Hoigaku Zasshi; 2005 Oct; 59(2):111-7. PubMed ID: 16296382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of molecular methods for routine identification of acetic acid bacteria.
    González A; Guillamón JM; Mas A; Poblet M
    Int J Food Microbiol; 2006 Apr; 108(1):141-6. PubMed ID: 16386324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Green Revolution: botanical contributions to forensics and drug enforcement.
    Miller Coyle H; Ladd C; Palmbach T; Lee HC
    Croat Med J; 2001 Jun; 42(3):340-5. PubMed ID: 11387649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.
    Cankar K; Stebih D; Dreo T; Zel J; Gruden K
    BMC Biotechnol; 2006 Aug; 6():37. PubMed ID: 16907967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of different methods for the detection and identification of Enterobacter sakazakii isolated from South African infant formula milks and the processing environment.
    Cawthorn DM; Botha S; Witthuhn RC
    Int J Food Microbiol; 2008 Sep; 127(1-2):129-38. PubMed ID: 18687498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Food forensics: using DNA technology to combat misdescription and fraud.
    Woolfe M; Primrose S
    Trends Biotechnol; 2004 May; 22(5):222-6. PubMed ID: 15109807
    [No Abstract]   [Full Text] [Related]  

  • 56. A survey of the methods for the characterization of microbial consortia and communities.
    Spiegelman D; Whissell G; Greer CW
    Can J Microbiol; 2005 May; 51(5):355-86. PubMed ID: 16088332
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental validation of a multiplex qPCR assay for assessing the quantity and quality of nuclear DNA in forensic samples.
    Swango KL; Hudlow WR; Timken MD; Buoncristiani MR
    Forensic Sci Int; 2007 Jul; 170(1):35-45. PubMed ID: 17071034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A polymerase chain reaction-restriction fragment length polymorphism method based on the analysis of a 16S rRNA/tRNA(Val) mitochondrial region for species identification of commercial penaeid shrimps (Crustacea: Decapoda: Penaeoidea) of food interest.
    Pascoal A; Barros-Velázquez J; Cepeda A; Gallardo JM; Calo-Mata P
    Electrophoresis; 2008 Jan; 29(2):499-509. PubMed ID: 18064597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An investigation of sequence deletions of amelogenin (AMELY), a Y-chromosome locus commonly used for gender determination.
    Mitchell RJ; Kreskas M; Baxter E; Buffalino L; Van Oorschot RA
    Ann Hum Biol; 2006; 33(2):227-40. PubMed ID: 16684695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic evidence of an Asian background in heteroplasmic Iberian cattle (Bos taurus): effect on food authentication studies based on polymerase chain reaction-restriction fragment length polymorphism analysis.
    Prado M; Calo P; Cepeda A; Barros-Velázquez J
    Electrophoresis; 2005 Aug; 26(15):2918-26. PubMed ID: 16007699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.