These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15927517)

  • 1. A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications.
    Breen PP; O'Keeffe DT; Conway R; Lyons GM
    Med Eng Phys; 2006 Mar; 28(2):177-86. PubMed ID: 15927517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A programmable and portable NMES device for drop foot correction and blood flow assist applications.
    Breen PP; Corley GJ; O'Keeffe DT; Conway R; Olaighin G
    Med Eng Phys; 2009 Apr; 31(3):400-8. PubMed ID: 18667351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A programmable and portable NMES device for drop foot correction and blood flow assist applications.
    Breen PP; Corley GJ; O'Keeffe DT; Conway R; OLaighin G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2416-9. PubMed ID: 18002481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 5. A review of portable FES-based neural orthoses for the correction of drop foot.
    Lyons GM; Sinkjaer T; Burridge JH; Wilcox DJ
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):260-79. PubMed ID: 12611364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a programmable multi-pattern FES system for restoring foot drop in stroke rehabilitation.
    Sabut SK; Kumar R; Mahadevappa M
    J Med Eng Technol; 2010 Apr; 34(3):217-23. PubMed ID: 20170354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BIONic WalkAide for correcting foot drop.
    Weber DJ; Stein RB; Chan KM; Loeb G; Richmond F; Rolf R; James K; Chong SL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):242-6. PubMed ID: 16003906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction.
    Byrne CA; O'Keeffe DT; Donnelly AE; Lyons GM
    J Electromyogr Kinesiol; 2007 Oct; 17(5):605-16. PubMed ID: 16990012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular transcutaneous functional electrical stimulation system.
    Popovic MR; Keller T
    Med Eng Phys; 2005 Jan; 27(1):81-92. PubMed ID: 15604009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.
    Hart DJ; Taylor PN; Chappell PH; Wood DE
    Med Eng Phys; 2006 Jun; 28(5):438-48. PubMed ID: 16140559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.
    Blaya JA; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):24-31. PubMed ID: 15068184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems.
    O'Dwyer SB; O'Keeffe DT; Coote S; Lyons GM
    Med Eng Phys; 2006 Mar; 28(2):166-76. PubMed ID: 15936975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel design of multichannel electrotherapeutic system.
    Amer MB; Ammary S; Al-Ebbini L; Awwad M; Qtait Y
    J Med Eng Technol; 2009; 33(5):394-402. PubMed ID: 19440913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of a use case/task based approach in the development of software for a portable neuromuscular stimulator device.
    Furey K; Conway R; O'Keeffe D; Lyons GM
    Med Eng Phys; 2007 Sep; 29(7):765-74. PubMed ID: 17049449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile drop foot stimulator for research applications.
    O'Keeffe DT; Lyons GM
    Med Eng Phys; 2002 Apr; 24(3):237-42. PubMed ID: 12062182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design for a simplified cochlear implant system.
    An SK; Park SI; Jun SB; Lee CJ; Byun KM; Sung JH; Wilson BS; Rebscher SJ; Oh SH; Kim SJ
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):973-82. PubMed ID: 17554817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified implanted drop foot stimulator system with graphical user interface for customised stimulation pulse-width profiles.
    O'Halloran T; Haugland M; Lyons GM; Sinkjaer T
    Med Biol Eng Comput; 2003 Nov; 41(6):701-9. PubMed ID: 14686596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal neurostimulator for a multifocal vision prosthesis.
    Wong YT; Dommel N; Preston P; Hallum LE; Lehmann T; Lovell NH; Suaning GJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):425-34. PubMed ID: 17894275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pelvic motion driven electrical stimulator for drop-foot treatment.
    Chen SW; Chen SC; Chen CF; Lai JS; Kuo TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():666-9. PubMed ID: 19964237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.