These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15927567)

  • 1. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure.
    Chen H; Clarkson BH; Sun K; Mansfield JF
    J Colloid Interface Sci; 2005 Aug; 288(1):97-103. PubMed ID: 15927567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of dental enamel-like hydroxyapatite through solution mediated solid-state conversion.
    Zhang J; Jiang D; Zhang J; Lin Q; Huang Z
    Langmuir; 2010 Mar; 26(5):2989-94. PubMed ID: 20112925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New observations of the hierarchical structure of human enamel, from nanoscale to microscale.
    Cui FZ; Ge J
    J Tissue Eng Regen Med; 2007; 1(3):185-91. PubMed ID: 18038410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enamel structure properties controlled by engineered proteins in transgenic mice.
    Fong H; White SN; Paine ML; Luo W; Snead ML; Sarikaya M
    J Bone Miner Res; 2003 Nov; 18(11):2052-9. PubMed ID: 14606519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of nanometer-scale rod array of hydroxyapatite crystal.
    Hayakawa S; Li Y; Tsuru K; Osaka A; Fujii E; Kawabata K
    Acta Biomater; 2009 Jul; 5(6):2152-60. PubMed ID: 19286435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic demineralization and oriented assembly of hydroxyapatite crystals in enamel: smart structures of biominerals.
    Pan H; Tao J; Yu X; Fu L; Zhang J; Zeng X; Xu G; Tang R
    J Phys Chem B; 2008 Jun; 112(24):7162-5. PubMed ID: 18503266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy study of human tooth enamel surfaces.
    Schaad P; Paris E; Cuisinier FJ; Voegel JC
    Scanning Microsc; 1993 Dec; 7(4):1149-52. PubMed ID: 8023085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct growth of human enamel-like calcium phosphate microstructures on human tooth.
    Wang X; Xia C; Zhang Z; Deng X; Wei S; Zheng G; Chen H
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1361-4. PubMed ID: 19441525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Property variations in the prism and the organic sheath within enamel by nanoindentation.
    Ge J; Cui FZ; Wang XM; Feng HL
    Biomaterials; 2005 Jun; 26(16):3333-9. PubMed ID: 15603829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Float and compress: honeycomb-like array of a highly stable protein scaffold.
    Heyman A; Medalsy I; Dgany O; Porath D; Markovich G; Shoseyov O
    Langmuir; 2009 May; 25(9):5226-9. PubMed ID: 19397358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of fluoride on the nanostructure and surface pK of enamel crystals: an atomic force microscopy study of human and rat enamel.
    Robinson C; Yamamoto K; Connell SD; Kirkham J; Nakagaki H; Smith AD
    Eur J Oral Sci; 2006 May; 114 Suppl 1():99-104; discussion 127-9, 380. PubMed ID: 16674669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy study of tooth surfaces.
    Farina M; Schemmel A; Weissmüller G; Cruz R; Kachar B; Bisch PM
    J Struct Biol; 1999 Mar; 125(1):39-49. PubMed ID: 10196115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomimetics of crystal texture in dental enamel prism by self-assembly oligopeptide].
    Wang L; Bai W; Feng HL; Jia XR
    Beijing Da Xue Xue Bao Yi Xue Ban; 2007 Feb; 39(1):46-9. PubMed ID: 17304326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of amphiphilic hexapyridinium cations at the air/water interface and on HOPG surfaces.
    Gong H; Bredenkötter B; Meier C; Hoffmann-Richter C; Ziener U; Kurth DG; Volkmer D
    Chemphyschem; 2007 Nov; 8(16):2354-62. PubMed ID: 17943709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution electron microscopy of the initial mineral deposition on enamel surface.
    Hayashi Y
    J Electron Microsc (Tokyo); 1993 Oct; 42(5):342-5. PubMed ID: 8106855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observations on structural features and characteristics of biological apatite crystals. 5. Three-dimensional observation on ultrastructure of human enamel crystals.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1993 Sep; 40(3):135-46. PubMed ID: 8403107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth tracks in dental enamel.
    Risnes S
    J Hum Evol; 1998; 35(4-5):331-50. PubMed ID: 9774498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations on the structural features and characteristics of biological apatite crystals. 2. Observation on the ultrastructure of human enamel crystals.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1992 Dec; 39(4):71-80. PubMed ID: 1333893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations on structural features and characteristics of biological apatite crystals. 7. Observation on lattice imperfection of human tooth and bone crystals II.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1993 Dec; 40(4):193-205. PubMed ID: 8275545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution transmission electron microscopy of developing enamel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).
    Barry JC; Kemp A
    Tissue Cell; 2007 Dec; 39(6):387-98. PubMed ID: 17888476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.