These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 15927608)
1. Foaming and interfacial properties of hydrolyzed beta-lactoglobulin. Davis JP; Doucet D; Foegeding EA J Colloid Interface Sci; 2005 Aug; 288(2):412-22. PubMed ID: 15927608 [TBL] [Abstract][Full Text] [Related]
2. Interfacial and foaming properties of sulfydryl-modified bovine beta-lactoglobulin. Croguennec T; Renault A; Bouhallab S; Pezennec S J Colloid Interface Sci; 2006 Oct; 302(1):32-9. PubMed ID: 16876179 [TBL] [Abstract][Full Text] [Related]
3. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Davis JP; Foegeding EA Colloids Surf B Biointerfaces; 2007 Feb; 54(2):200-10. PubMed ID: 17123793 [TBL] [Abstract][Full Text] [Related]
4. Electrostatic effects on the yield stress of whey protein isolate foams. Davis JP; Foegeding EA; Hansen FK Colloids Surf B Biointerfaces; 2004 Mar; 34(1):13-23. PubMed ID: 15261086 [TBL] [Abstract][Full Text] [Related]
5. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2. Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384 [TBL] [Abstract][Full Text] [Related]
6. Effect of thermal treatment on interfacial properties of beta-lactoglobulin. Kim DA; Cornec M; Narsimhan G J Colloid Interface Sci; 2005 May; 285(1):100-9. PubMed ID: 15797402 [TBL] [Abstract][Full Text] [Related]
7. Foaming characteristics of chemical and enzymatic hydrolysates of bovine beta-lactoglobulin. Rahali V; Guéguen J Nahrung; 2000 Oct; 44(5):309-17. PubMed ID: 11075371 [TBL] [Abstract][Full Text] [Related]
8. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems. Martinez MJ; Sánchez CC; Patino JM; Pilosof AM Colloids Surf B Biointerfaces; 2009 Jan; 68(1):39-47. PubMed ID: 19013776 [TBL] [Abstract][Full Text] [Related]
9. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants. Rippner Blomqvist B; Ridout MJ; Mackie AR; Wärnheim T; Claesson PM; Wilde P Langmuir; 2004 Nov; 20(23):10150-8. PubMed ID: 15518507 [TBL] [Abstract][Full Text] [Related]
10. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure. Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971 [TBL] [Abstract][Full Text] [Related]
11. Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface. Sakuno MM; Matsumoto S; Kawai S; Taihei K; Matsumura Y Langmuir; 2008 Oct; 24(20):11483-8. PubMed ID: 18803411 [TBL] [Abstract][Full Text] [Related]
12. Effect of genetic variation on the tryptic hydrolysis of bovine beta-lactoglobulin A, B, and C. Creamer LK; Nilsson HC; Paulsson MA; Coker CJ; Hill JP; Jiménez-Flores R J Dairy Sci; 2004 Dec; 87(12):4023-32. PubMed ID: 15545362 [TBL] [Abstract][Full Text] [Related]
14. Effect of temperature and high pressure on the foaming properties of beta-lactoglobulin salted out at pH 2. Leman J; Doga T Commun Agric Appl Biol Sci; 2003; 68(2 Pt B):489-92. PubMed ID: 24757793 [TBL] [Abstract][Full Text] [Related]
15. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B. Knudsen JC; Øgendal LH; Skibsted LH Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877 [TBL] [Abstract][Full Text] [Related]
16. Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity. Kim SB; Ki KS; Khan MA; Lee WS; Lee HJ; Ahn BS; Kim HS J Dairy Sci; 2007 Sep; 90(9):4043-50. PubMed ID: 17699020 [TBL] [Abstract][Full Text] [Related]
17. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Freer EM; Yim KS; Fuller GG; Radke CJ Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508 [TBL] [Abstract][Full Text] [Related]
18. Self-assembly of monoglycerides in beta-lactoglobulin adsorbed films at the air-water interface. Structural, topographical, and rheological consequences. Rodríguez Patino JM; Fernandez MC; Rodríguez Niño MR; Sanchez CC Biomacromolecules; 2006 Sep; 7(9):2661-70. PubMed ID: 16961330 [TBL] [Abstract][Full Text] [Related]
19. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH. Kim HJ; Decker EA; McClements DJ Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility of beta-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. Guo MR; Fox PF; Flynn A; Kindstedt PS J Dairy Sci; 1995 Nov; 78(11):2336-44. PubMed ID: 8747324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]