These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15927612)

  • 1. Formation of calcium crystallites in dry natural rubber particles.
    Rippel MM; Leite CA; Lee LT; Galembeck F
    J Colloid Interface Sci; 2005 Aug; 288(2):449-56. PubMed ID: 15927612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy.
    Mavrocordatos D; Pronk W; Boiler M
    Water Sci Technol; 2004; 50(12):9-18. PubMed ID: 15685998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex.
    Wang S; Liu J; Wu Y; You Y; He J; Zhang J; Zhang L; Dong Y
    Anal Biochem; 2016 Apr; 499():34-42. PubMed ID: 26844871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy.
    Rippel MM; Paula Leite CA; Galembeck F
    Anal Chem; 2002 Jun; 74(11):2541-6. PubMed ID: 12069235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of associated proteins and phospholipids in natural rubber latex.
    Sansatsadeekul J; Sakdapipanich J; Rojruthai P
    J Biosci Bioeng; 2011 Jun; 111(6):628-34. PubMed ID: 21354367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of small and large rubber particles from Hevea brasiliensis.
    Yamashita S; Mizuno M; Hayashi H; Yamaguchi H; Miyagi-Inoue Y; Fushihara K; Koyama T; Nakayama T; Takahashi S
    Biosci Biotechnol Biochem; 2018 Jun; 82(6):1011-1020. PubMed ID: 29191089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor.
    da Costa BM; Keasling JD; Cornish K
    Biomacromolecules; 2005; 6(1):279-89. PubMed ID: 15638531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation.
    Wititsuwannakul R; Pasitkul P; Kanokwiroon K; Wititsuwannakul D
    Phytochemistry; 2008 Jan; 69(2):339-47. PubMed ID: 17897690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation.
    Wititsuwannakul R; Rukseree K; Kanokwiroon K; Wititsuwannakul D
    Phytochemistry; 2008 Mar; 69(5):1111-8. PubMed ID: 18226821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterization of natural rubber-Ca/P blends for biomedical purposes.
    Nascimento RM; Faita FL; Agostini DL; Job AE; Guimarães FE; Bechtold IH
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():29-34. PubMed ID: 24863193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using electrospray-assisted pyrolysis ionization/mass spectrometry for the rapid characterization of trace polar components in crude oil, amber, humic substances, and rubber samples.
    Hsu HJ; Oung JN; Kuo TL; Wu SH; Shiea J
    Rapid Commun Mass Spectrom; 2007; 21(3):375-84. PubMed ID: 17206740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber.
    Mekkriengkrai D; Ute K; Swiezewska E; Chojnacki T; Tanaka Y; Sakdapipanich JT
    Biomacromolecules; 2004; 5(5):2013-9. PubMed ID: 15360318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments.
    Sakdapipanich JT
    J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation.
    Wititsuwannakul R; Pasitkul P; Jewtragoon P; Wititsuwannakul D
    Phytochemistry; 2008 Feb; 69(3):656-62. PubMed ID: 17983633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-energy-loss EFTEM imaging of thick particles and aggregates.
    Valadares LF; do Carmo Bragança F; da Silva CA; Leite CA; Galembeck F
    J Colloid Interface Sci; 2007 May; 309(1):140-8. PubMed ID: 17286981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes.
    Berthelot K; Lecomte S; Estevez Y; Zhendre V; Henry S; Thévenot J; Dufourc EJ; Alves ID; Peruch F
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):287-99. PubMed ID: 24036080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Tb3+ particles: polyol-mediated synthesis and luminescent properties.
    Wang Z; Lil G; Quan Z; Kong D; Liu X; Yu M; Lin J
    J Nanosci Nanotechnol; 2007 Feb; 7(2):602-9. PubMed ID: 17450802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers.
    Horiuchi S; Hanada T; Ebisawa M; Matsuda Y; Kobayashi M; Takahara A
    ACS Nano; 2009 May; 3(5):1297-304. PubMed ID: 19402650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospray ion beam deposition of clusters and biomolecules.
    Rauschenbach S; Stadler FL; Lunedei E; Malinowski N; Koltsov S; Costantini G; Kern K
    Small; 2006 Apr; 2(4):540-7. PubMed ID: 17193083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of transmission electron and atomic force microscopy techniques to determine volume equivalent diameter of submicrometer particles.
    Tumolva L; Park JY; Park K
    Microsc Res Tech; 2012 Apr; 75(4):505-12. PubMed ID: 21919129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.