These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 15927632)
1. Electrokinetic generation of temporally and spatially stable concentration gradients in microchannels. Biddiss E; Li D J Colloid Interface Sci; 2005 Aug; 288(2):606-15. PubMed ID: 15927632 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical generation of gradients in surfactant concentration across microfluidic channels. Liu X; Abbott NL Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794 [TBL] [Abstract][Full Text] [Related]
3. Controlled microscale diffusion gradients in quiescent extracellular fluid. Tan DC; Yung LY; Roy P Biomed Microdevices; 2010 Jun; 12(3):523-32. PubMed ID: 20306143 [TBL] [Abstract][Full Text] [Related]
4. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip. Yang M; Yang J; Li CW; Zhao J Lab Chip; 2002 Aug; 2(3):158-63. PubMed ID: 15100827 [TBL] [Abstract][Full Text] [Related]
5. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Hattori K; Sugiura S; Kanamori T Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461 [TBL] [Abstract][Full Text] [Related]
6. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911 [TBL] [Abstract][Full Text] [Related]
7. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771 [TBL] [Abstract][Full Text] [Related]
8. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution. Li CW; Chen R; Yang M Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Park JY; Yoo SJ; Hwang CM; Lee SH Lab Chip; 2009 Aug; 9(15):2194-202. PubMed ID: 19606296 [TBL] [Abstract][Full Text] [Related]
11. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Biddiss E; Erickson D; Li D Anal Chem; 2004 Jun; 76(11):3208-13. PubMed ID: 15167803 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic pool structure for cell docking and rapid mixing. Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811 [TBL] [Abstract][Full Text] [Related]
14. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lee K; Kim C; Ahn B; Panchapakesan R; Full AR; Nordee L; Kang JY; Oh KW Lab Chip; 2009 Mar; 9(5):709-17. PubMed ID: 19224022 [TBL] [Abstract][Full Text] [Related]