These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15927736)

  • 41. A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket--roles of interface friction and distal-end boundary conditions.
    Zhang M; Mak AF
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):337-46. PubMed ID: 8973960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced prosthetic techniques for below knee amputations.
    Staats TB
    Orthopedics; 1985 Feb; 8(2):249-58. PubMed ID: 4094974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A preliminary investigation into the development of 3-D printing of prosthetic sockets.
    Herbert N; Simpson D; Spence WD; Ion W
    J Rehabil Res Dev; 2005; 42(2):141-6. PubMed ID: 15944878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preliminary experiences with the CIR casting system for transtibial prosthetic sockets.
    Thanh NH; Poetsma PA; Jensen JS
    Prosthet Orthot Int; 2009 Jun; 33(2):130-4. PubMed ID: 19367516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling the interactions between a prosthetic socket, polyurethane liners and the residual limb in transtibial amputees using non-linear finite element analysis.
    Simpson G; Fisher C; Wright DK
    Biomed Sci Instrum; 2001; 37():343-7. PubMed ID: 11347414
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of computational analysis with clinical measurement of stresses on below-knee residual limb in a prosthetic socket.
    Zhang M; Roberts C
    Med Eng Phys; 2000 Nov; 22(9):607-12. PubMed ID: 11259929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accuracy and precision of volumetric determinations using two commercial CAD systems for prosthetics: a technical note.
    Johansson S; Oberg T
    J Rehabil Res Dev; 1998 Jan; 35(1):27-33. PubMed ID: 9505250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computer-integrated finite element modeling of human middle ear.
    Sun Q; Gan RZ; Chang KH; Dormer KJ
    Biomech Model Mechanobiol; 2002 Oct; 1(2):109-22. PubMed ID: 14595544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A quantitative method for comparing and evaluating manual prosthetic socket modifications.
    Lemaire ED; Johnson F
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):303-9. PubMed ID: 8973956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Report on the evaluation of the VA/Seattle below-knee prosthesis.
    Ellepola W; Sheredos SJ
    J Rehabil Res Dev; 1993; 30(2):260-6. PubMed ID: 8035354
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation.
    Kluess D; Souffrant R; Mittelmeier W; Wree A; Schmitz KP; Bader R
    Comput Methods Programs Biomed; 2009 Jul; 95(1):23-30. PubMed ID: 19231021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interface pressure profile analysis for patellar tendon-bearing socket and hydrostatic socket.
    Moo EK; Osman NA; Pingguan-Murphy B; Abas WA; Spence WD; Solomonidis SE
    Acta Bioeng Biomech; 2009; 11(4):37-43. PubMed ID: 20405814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research.
    Sewell P; Noroozi S; Vinney J; Andrews S
    Prosthet Orthot Int; 2000 Aug; 24(2):97-107. PubMed ID: 11061196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Study on design method for the individual anatomical hip joint endoprosthesis].
    Gong X; Kang L; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):92-6. PubMed ID: 18435265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The virtual model of the prosthetic tibial components.
    Tarniţă D; Popa D; Tarniţă DN; Grecu D; Negru M
    Rom J Morphol Embryol; 2006; 47(4):339-44. PubMed ID: 17392979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative roll-over analysis of prosthetic feet.
    Curtze C; Hof AL; van Keeken HG; Halbertsma JP; Postema K; Otten B
    J Biomech; 2009 Aug; 42(11):1746-53. PubMed ID: 19446814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A numerical approach to evaluate the fatigue life of monolimb.
    Chen NZ; Lee WC; Zhang M
    Med Eng Phys; 2006 Apr; 28(3):290-6. PubMed ID: 16112888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D reconstruction of the structure of a residual limb for customising the design of a prosthetic socket.
    Shuxian Z; Wanhua Z; Bingheng L
    Med Eng Phys; 2005 Jan; 27(1):67-74. PubMed ID: 15604007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.