BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15928092)

  • 1. HIV dynamics with multiple infections of target cells.
    Dixit NM; Perelson AS
    Proc Natl Acad Sci U S A; 2005 Jun; 102(23):8198-203. PubMed ID: 15928092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics of HIV propagation.
    Strain MC; Richman DD; Wong JK; Levine H
    J Theor Biol; 2002 Sep; 218(1):85-96. PubMed ID: 12297072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased burst size in multiply infected cells can alter basic virus dynamics.
    Cummings KW; Levy DN; Wodarz D
    Biol Direct; 2012 May; 7():16. PubMed ID: 22569346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of recombinant forms of HIV: dynamics and scaling.
    Suryavanshi GW; Dixit NM
    PLoS Comput Biol; 2007 Oct; 3(10):2003-18. PubMed ID: 17967052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of HIV infection: Simulating T4, T8, macrophages, antibody, and virus via specific anti-HIV response in the presence of adaptation and tropism.
    Wasserstein-Robbins F
    Bull Math Biol; 2010 Jul; 72(5):1208-53. PubMed ID: 20151219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of HIV persistence: implications for vaccines and therapy.
    Bremermann HJ
    J Acquir Immune Defic Syndr Hum Retrovirol; 1995 Aug; 9(5):459-83. PubMed ID: 7627623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection.
    Wildum S; Schindler M; Münch J; Kirchhoff F
    J Virol; 2006 Aug; 80(16):8047-59. PubMed ID: 16873261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical models of HIV replication and pathogenesis.
    Wodarz D
    Methods Mol Biol; 2014; 1184():563-81. PubMed ID: 25048145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal viral production.
    Coombs D; Gilchrist MA; Percus J; Perelson AS
    Bull Math Biol; 2003 Nov; 65(6):1003-23. PubMed ID: 14607286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays.
    Yuan Z; Zou X
    Math Biosci Eng; 2013 Apr; 10(2):483-98. PubMed ID: 23458310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD4-independent infection of human B cells with HIV type 1: detection of unintegrated viral DNA.
    De Silva FS; Venturini DS; Wagner E; Shank PR; Sharma S
    AIDS Res Hum Retroviruses; 2001 Nov; 17(17):1585-98. PubMed ID: 11779346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary in vitro growth cycle and transmission studies of HIV-1 in an autologous primary cell assay of blood-derived macrophages and peripheral blood mononuclear cells.
    Tsai WP; Conley SR; Kung HF; Garrity RR; Nara PL
    Virology; 1996 Dec; 226(2):205-16. PubMed ID: 8955040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic theory of early viral infection: continuous versus burst production of virions.
    Pearson JE; Krapivsky P; Perelson AS
    PLoS Comput Biol; 2011 Feb; 7(2):e1001058. PubMed ID: 21304934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing within-host viral fitness: infected cell lifespan and virion production rate.
    Gilchrist MA; Coombs D; Perelson AS
    J Theor Biol; 2004 Jul; 229(2):281-8. PubMed ID: 15207481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding hepatitis C viral dynamics with direct-acting antiviral agents due to the interplay between intracellular replication and cellular infection dynamics.
    Guedj J; Neumann AU
    J Theor Biol; 2010 Dec; 267(3):330-40. PubMed ID: 20831874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nef alleles from human immunodeficiency virus type 1-infected long-term-nonprogressor hemophiliacs with or without late disease progression are defective in enhancing virus replication and CD4 down-regulation.
    Crotti A; Neri F; Corti D; Ghezzi S; Heltai S; Baur A; Poli G; Santagostino E; Vicenzi E
    J Virol; 2006 Nov; 80(21):10663-74. PubMed ID: 16943296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART.
    Sedaghat AR; Siliciano RF; Wilke CO
    BMC Infect Dis; 2008 Jan; 8():2. PubMed ID: 18171475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4/CXCR4 co-expression allows productive HIV-1 infection in canine kidney MDCK cells.
    Cervantes-Acosta G; Welman M; Freund F; Cohen EA; Lemay G
    Virus Res; 2006 Sep; 120(1-2):138-45. PubMed ID: 16600413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted infection of HIV-1 Env expressing cells by HIV(CD4/CXCR4) vectors reveals a potential new rationale for HIV-1 mediated down-modulation of CD4.
    Ye Z; Harmison GG; Ragheb JA; Schubert M
    Retrovirology; 2005 Dec; 2():80. PubMed ID: 16371160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic modelling of viral blips in HIV-1-infected patients: effects of inhomogeneous density fluctuations.
    Sánchez-Taltavull D; Alarcón T
    J Theor Biol; 2015 Apr; 371():79-89. PubMed ID: 25681146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.