These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 1592854)
1. The physical and mechanical effects of suspension-induced osteopenia on mouse long bones. Simske SJ; Guerra KM; Greenberg AR; Luttges MW J Biomech; 1992 May; 25(5):489-99. PubMed ID: 1592854 [TBL] [Abstract][Full Text] [Related]
2. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones. Simske SJ; Greenberg AR; Luttges MW J Mater Sci Mater Med; 1991 Jan; 2(1):43-50. PubMed ID: 11538820 [TBL] [Abstract][Full Text] [Related]
3. Exercise prevention of unloading-induced bone and muscle loss in adult mice. Roland M; Hanson AM; Cannon CM; Stodieck LS; Ferguson VL Biomed Sci Instrum; 2005; 41():128-34. PubMed ID: 15850093 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. Kodama Y; Nakayama K; Fuse H; Fukumoto S; Kawahara H; Takahashi H; Kurokawa T; Sekiguchi C; Nakamura T; Matsumoto T J Bone Miner Res; 1997 Jul; 12(7):1058-67. PubMed ID: 9200005 [TBL] [Abstract][Full Text] [Related]
5. Suspension osteopenia in mice: whole body electromagnetic field effects. Simske SJ; Luttges MW Bioelectromagnetics; 1995; 16(3):152-9. PubMed ID: 7677791 [TBL] [Abstract][Full Text] [Related]
6. Effects of disrupted beta1-integrin function on the skeletal response to short-term hindlimb unloading in mice. Iwaniec UT; Wronski TJ; Amblard D; Nishimura Y; van der Meulen MC; Wade CE; Bourgeois MA; Damsky CD; Globus RK J Appl Physiol (1985); 2005 Feb; 98(2):690-6. PubMed ID: 15465888 [TBL] [Abstract][Full Text] [Related]
7. Genetic variations in bone density, histomorphometry, and strength in mice. Akhter MP; Iwaniec UT; Covey MA; Cullen DM; Kimmel DB; Recker RR Calcif Tissue Int; 2000 Oct; 67(4):337-44. PubMed ID: 11000349 [TBL] [Abstract][Full Text] [Related]
8. Cortical tibial bone volume in two strains of mice: effects of sciatic neurectomy and genetic regulation of bone response to mechanical loading. Kodama Y; Dimai HP; Wergedal J; Sheng M; Malpe R; Kutilek S; Beamer W; Donahue LR; Rosen C; Baylink DJ; Farley J Bone; 1999 Aug; 25(2):183-90. PubMed ID: 10456383 [TBL] [Abstract][Full Text] [Related]
9. Tracking the changes in unloaded bone: Morphology and gene expression. Hardiman DA; O'Brien FJ; Prendergast PJ; Croke DT; Staines A; Lee TC Eur J Morphol; 2005; 42(4-5):208-16. PubMed ID: 16982478 [TBL] [Abstract][Full Text] [Related]
10. Skeletal changes in type-2 diabetic Goto-Kakizaki rats. Ahmad T; Ohlsson C; Sääf M; Ostenson CG; Kreicbergs A J Endocrinol; 2003 Jul; 178(1):111-6. PubMed ID: 12844342 [TBL] [Abstract][Full Text] [Related]
11. Low amplitude, high frequency strains imposed by electrically stimulated skeletal muscle retards the development of osteopenia in the tibiae of hindlimb suspended rats. Midura RJ; Dillman CJ; Grabiner MD Med Eng Phys; 2005 May; 27(4):285-93. PubMed ID: 15823469 [TBL] [Abstract][Full Text] [Related]
12. Meagre effects of disuse on the human fibula are not explained by bone size or geometry. Ireland A; Capozza RF; Cointry GR; Nocciolino L; Ferretti JL; Rittweger J Osteoporos Int; 2017 Feb; 28(2):633-641. PubMed ID: 27734100 [TBL] [Abstract][Full Text] [Related]
13. Ash content modulation of torsionally derived effective material properties in cortical mouse bone. Battaglia TC; Tsou AC; Taylor EA; Mikic B J Biomech Eng; 2003 Oct; 125(5):615-9. PubMed ID: 14618920 [TBL] [Abstract][Full Text] [Related]
14. Contribution of dietary and loading changes to the effects of suspension on mouse femora. Simske SJ; Broz JJ; Fleet ML; Schmeister TA; Gayles EC; Luttges MW J Exp Zool; 1994 Jul; 269(3):277-85. PubMed ID: 8014618 [TBL] [Abstract][Full Text] [Related]
15. Disuse osteopenia induced by botulinum toxin is similar in skeletally mature young and aged female C57BL/6J mice. Vegger JB; Brüel A; Brent MB; Thomsen JS J Bone Miner Metab; 2018 Mar; 36(2):170-179. PubMed ID: 28365811 [TBL] [Abstract][Full Text] [Related]
16. Osteoclastogenesis inhibitory factor/osteoprotegerin reduced bone loss induced by mechanical unloading. Ichinose Y; Tanaka H; Inoue M; Mochizuki S; Tsuda E; Seino Y Calcif Tissue Int; 2004 Oct; 75(4):338-43. PubMed ID: 15549649 [TBL] [Abstract][Full Text] [Related]
17. Geometric and material contributions to whole bone structural behavior in GDF-7-deficient mice. Maloul A; Rossmeier K; Mikic B; Pogue V; Battaglia T Connect Tissue Res; 2006; 47(3):157-62. PubMed ID: 16753809 [TBL] [Abstract][Full Text] [Related]
18. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660 [TBL] [Abstract][Full Text] [Related]
19. High-impact exercise in rats prior to and during suspension can prevent bone loss. Yanagihara GR; Paiva AG; Gasparini GA; Macedo AP; Frighetto PD; Volpon JB; Shimano AC Braz J Med Biol Res; 2016 Mar; 49(3):. PubMed ID: 26840705 [TBL] [Abstract][Full Text] [Related]
20. Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats. Metzger CE; Brezicha JE; Elizondo JP; Narayanan SA; Hogan HA; Bloomfield SA Bone; 2017 Dec; 105():26-34. PubMed ID: 28782619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]