These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15928775)

  • 1. Organic phase stabilization of rhodium nanoparticle catalyst by direct phase transfer from aqueous solution to room temperature ionic liquid based on surfactant counter anion exchange.
    Mévellec V; Leger B; Mauduit M; Roucoux A
    Chem Commun (Camb); 2005 Jun; (22):2838-9. PubMed ID: 15928775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures.
    Harada M; Abe D; Kimura Y
    J Colloid Interface Sci; 2005 Dec; 292(1):113-21. PubMed ID: 16024035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature induced phase separation of luminescent silica nanoparticles in Triton X-100 solutions.
    Mustafina AR; Elistratova JG; Bochkova OD; Burilov VA; Fedorenko SV; Konovalov AI; Soloveva SY
    J Colloid Interface Sci; 2011 Feb; 354(2):644-9. PubMed ID: 21163490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyionic gels: efficient heterogeneous media for metal scavenging and catalysis.
    Thiot C; Schmutz M; Wagner A; Mioskowski C
    Angew Chem Int Ed Engl; 2006 Apr; 45(18):2868-71. PubMed ID: 16568484
    [No Abstract]   [Full Text] [Related]  

  • 5. A general phase transfer protocol for synthesizing alkylamine-stabilized nanoparticles of noble metals.
    Yang J; Lee JY; Too HP
    Anal Chim Acta; 2007 Apr; 588(1):34-41. PubMed ID: 17386791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-organic phase transfer of gold nanoparticles and gold nanorods using an ionic liquid.
    Wei GT; Yang Z; Lee CY; Yang HY; Wang CR
    J Am Chem Soc; 2004 Apr; 126(16):5036-7. PubMed ID: 15099064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodide ions control galvanic replacement growth of uniform rhodium nanotubes at room temperature.
    Bi Y; Lu G
    Chem Commun (Camb); 2008 Dec; (47):6402-4. PubMed ID: 19048169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization.
    Matteucci ME; Hotze MA; Johnston KP; Williams RO
    Langmuir; 2006 Oct; 22(21):8951-9. PubMed ID: 17014140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions.
    Usui H; Shimizu Y; Sasaki T; Koshizaki N
    J Phys Chem B; 2005 Jan; 109(1):120-4. PubMed ID: 16850993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step in situ synthesis of NHx-adsorbed rhodium nanocrystals at liquid-liquid interfaces for possible electrocatalytic applications.
    Patil VS; Krishna SR; Hawaldar RR; Gaikwad AB; Sathaye SD; Patil KR
    J Colloid Interface Sci; 2011 Jun; 358(1):238-44. PubMed ID: 21453926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules.
    Kumar A; Joshi H; Pasricha R; Mandale AB; Sastry M
    J Colloid Interface Sci; 2003 Aug; 264(2):396-401. PubMed ID: 16256657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system.
    Schulz J; Roucoux A; Patin H
    Chemistry; 2000 Feb; 6(4):618-24. PubMed ID: 10807173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of monodisperse magnetic nanoparticles.
    Lattuada M; Hatton TA
    Langmuir; 2007 Feb; 23(4):2158-68. PubMed ID: 17279708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts.
    Rapp JL; Huang Y; Natella M; Cai Y; Lin VS; Pruski M
    Solid State Nucl Magn Reson; 2009 Apr; 35(2):82-6. PubMed ID: 19181489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of electrochemical single-electron-transfer events of gold nanoparticles in aqueous solution in the presence of both ammonium and sulfonate surface-active agents.
    Nakai M; Yamanoi Y; Nishimori Y; Yonezawa T; Nishihara H
    Angew Chem Int Ed Engl; 2008; 47(35):6699-702. PubMed ID: 18646032
    [No Abstract]   [Full Text] [Related]  

  • 16. Silica nanoparticles at interfaces modulated by amphiphilic polymer and surfactant.
    Alves de Rezende C; Lee LT; Galembeck F
    Langmuir; 2008 Jul; 24(14):7346-53. PubMed ID: 18547078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous rhodium(III) hydrides and mononuclear rhodium(II) complexes.
    Bakac A
    Dalton Trans; 2006 Apr; (13):1589-96. PubMed ID: 16547532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).
    Helgason T; Awad TS; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2009 Jun; 334(1):75-81. PubMed ID: 19380149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase.
    Cao C; Park S; Sim SJ
    J Colloid Interface Sci; 2008 Jun; 322(1):152-7. PubMed ID: 18395217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transfer of large anisotropic plasmon resonant silver nanoparticles from aqueous to organic solution.
    Kulkarni AP; Munechika K; Noone KM; Smith JM; Ginger DS
    Langmuir; 2009 Jul; 25(14):7932-9. PubMed ID: 19441811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.