BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15928857)

  • 1. Rational strategy for the production of new crude lipases from Candida rugosa.
    de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV
    Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation.
    Pernas MA; López C; Pastrana L; Rúa ML
    J Biotechnol; 2001 Nov; 84(2):163-74. PubMed ID: 11090688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media.
    López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML
    Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Candida rugosa lipases: an overview.
    Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR
    Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on a novel carbon source and cosolvent for lipase production by Candida rugosa.
    Wei D; Zhang LY; Song Q
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):133-6. PubMed ID: 15069604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving lipase production from Candida rugosa by a biochemical engineering approach.
    Gordillo MA; Montesinos JL; Casas C; Valero F; Lafuente J; Solà C
    Chem Phys Lipids; 1998 Jun; 93(1-2):131-42. PubMed ID: 9720255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes.
    Pernas MA; López C; Rúa ML; Hermoso J
    FEBS Lett; 2001 Jul; 501(1):87-91. PubMed ID: 11457462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of native and recombinant lipases by Candida rugosa: a review.
    Ferrer P; Montesinos JL; Valero F; Solà C
    Appl Biochem Biotechnol; 2001 Sep; 95(3):221-55. PubMed ID: 11732718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of methyloleate in production of microbial lipase.
    Destain J; Fickers P; Weekers F; Moreau B; Thonart P
    Appl Biochem Biotechnol; 2005; 121-124():269-77. PubMed ID: 15917605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability studies and effect of the initial oleic acid concentration on lipase production by Candida rugosa.
    Gordillo MA; Obradors N; Montesinos JL; Valero F; Lafuente J; Solà C
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):38-41. PubMed ID: 7766134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter analysis and differential expression of the Candida rugosa lipase gene family in response to culture conditions.
    Hsu KH; Lee GC; Shaw JF
    J Agric Food Chem; 2008 Mar; 56(6):1992-8. PubMed ID: 18290622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of carboxylester lipase (CEL) isoenzymes from Candida rugosa and identification of the corresponding genes.
    Diczfalusy MA; Hellman U; Alexson SE
    Arch Biochem Biophys; 1997 Dec; 348(1):1-8. PubMed ID: 9390168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation.
    Martínez-Ruiz A; García HS; Saucedo-Castañeda G; Favela-Torres E
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):393-401. PubMed ID: 18392560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme.
    Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological control on the expression and secretion of Candida rugosa lipase.
    Lotti M; Monticelli S; Montesinos JL; Brocca S; Valero F; Lafuente J
    Chem Phys Lipids; 1998 Jun; 93(1-2):143-8. PubMed ID: 9720256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fermentation conditions in the enzymatic activity and stereoselectivity of crude lipase from Candida rugosa.
    Sánchez A; De La Casa RM; Sinisterra JV; Valero F; Sánchez-Montero JM
    Appl Biochem Biotechnol; 1999 Apr; 80(1):65-75. PubMed ID: 15304677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies.
    Gordillo MA; Sanz A; Sánchez A; Valero F; Montesinos JL; Lafuente J; Solá C
    Biotechnol Bioeng; 1998 Oct; 60(2):156-68. PubMed ID: 10099417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.