BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15928927)

  • 1. Molecular characterization of spontaneous and growth-factor-augmented chondrogenesis in periosteum-bone tissue transferred into a joint.
    Jung M; Gotterbarm T; Gruettgen A; Vilei SB; Breusch S; Richter W
    Histochem Cell Biol; 2005 Jun; 123(4-5):447-56. PubMed ID: 15928927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of chondrocyte precursors in periosteum.
    Ito Y; Fitzsimmons JS; Sanyal A; Mello MA; Mukherjee N; O'Driscoll SW
    Osteoarthritis Cartilage; 2001 Apr; 9(3):215-23. PubMed ID: 11300744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen.
    Choi YS; Lim SM; Shin HC; Lee CW; Kim SL; Kim DI
    Biotechnol Lett; 2007 Feb; 29(2):323-9. PubMed ID: 17120085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment with insulin-like growth factor-1 increases chondrogenesis by periosteum in vitro.
    Mierisch CM; Anderson PC; Balian G; Diduch DR
    Connect Tissue Res; 2002; 43(4):559-68. PubMed ID: 12685862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No effect of subperiosteal growth factor application on periosteal neo-chondrogenesis in osteoperiosteal bone grafts for osteochondral defect repair.
    Gotterbarm T; Breusch SJ; Vilei SB; Mainil-Varlet P; Richter W; Jung M
    Int Orthop; 2013 Jun; 37(6):1171-8. PubMed ID: 23503670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Articular cartilage regeneration using periosteum.
    O'Driscoll SW
    Clin Orthop Relat Res; 1999 Oct; (367 Suppl):S186-203. PubMed ID: 10546647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of periosteum in cartilage repair.
    O'Driscoll SW; Fitzsimmons JS
    Clin Orthop Relat Res; 2001 Oct; (391 Suppl):S190-207. PubMed ID: 11603704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of CD-RAP mRNA during periosteal chondrogenesis.
    Sanyal A; Clemens V; Fitzsimmons JS; Reinholz GG; Sarkar G; Mukherjee N; O'Driscoll SW
    J Orthop Res; 2003 Mar; 21(2):296-304. PubMed ID: 12568962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1alpha activity.
    Gelse K; Mühle C; Knaup K; Swoboda B; Wiesener M; Hennig F; Olk A; Schneider H
    Osteoarthritis Cartilage; 2008 Dec; 16(12):1457-65. PubMed ID: 18524637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo generation of cartilage from periosteum.
    Emans PJ; Surtel DA; Frings EJ; Bulstra SK; Kuijer R
    Tissue Eng; 2005; 11(3-4):369-77. PubMed ID: 15869417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells.
    Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H
    J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age.
    De Bari C; Dell'Accio F; Luyten FP
    Arthritis Rheum; 2001 Jan; 44(1):85-95. PubMed ID: 11212180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells.
    Gruber R; Mayer C; Bobacz K; Krauth MT; Graninger W; Luyten FP; Erlacher L
    Endocrinology; 2001 May; 142(5):2087-94. PubMed ID: 11316776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Integration of periosteum covered autogenous bone grafts with and without autologous chondrocytes. An animal experiment using the Göttinger minipig].
    Gotterbarm T; Reitzel T; Schneider U; Voss HJ; Stofft E; Breusch SJ
    Orthopade; 2003 Jan; 32(1):65-73. PubMed ID: 12557088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxygen tension during cartilage formation by periosteum.
    O'Driscoll SW; Fitzsimmons JS; Commisso CN
    J Orthop Res; 1997 Sep; 15(5):682-7. PubMed ID: 9420597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of a cDNA sequence of rabbit GDF5 (mature form) and pattern of its mRNA expression during periosteal chondrogenesis.
    Sanyal A; Sarkar G; Fitzsimmons JS; O'Driscoll SW
    Mol Biotechnol; 2000 Nov; 16(3):203-10. PubMed ID: 11252805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of bovine chondrocyte metabolism by free periosteal grafts in vitro.
    Steinhagen J; Niggemeyer O; Bruns J; Klebig F; Fuerst M; Ruether W; Schuenke M; Kurz B
    Int J Artif Organs; 2012 Feb; 35(2):108-18. PubMed ID: 22395917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular origin and evolution of neochondrogenesis in major full-thickness defects of a joint surface treated by free autogenous periosteal grafts and subjected to continuous passive motion in rabbits.
    Zarnett R; Delaney JP; Driscoll SW; Salter RB
    Clin Orthop Relat Res; 1987 Sep; (222):267-74. PubMed ID: 3621731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture.
    Fan H; Zhang C; Li J; Bi L; Qin L; Wu H; Hu Y
    Biomacromolecules; 2008 Mar; 9(3):927-34. PubMed ID: 18269244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.