These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15928936)

  • 1. Mutation of the pore glutamate affects both cytoplasmic and external dequalinium block in the rat olfactory CNGA2 channel.
    Qu W; Moorhouse AJ; Lewis TM; Pierce KD; Barry PH
    Eur Biophys J; 2005 Jul; 34(5):442-53. PubMed ID: 15928936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dequalinium: a novel, high-affinity blocker of CNGA1 channels.
    Rosenbaum T; Islas LD; Carlson AE; Gordon SE
    J Gen Physiol; 2003 Jan; 121(1):37-47. PubMed ID: 12508052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-dependent block of CNG channels by dequalinium.
    Rosenbaum T; Gordon-Shaag A; Islas LD; Cooper J; Munari M; Gordon SE
    J Gen Physiol; 2004 Mar; 123(3):295-304. PubMed ID: 14981138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pore-lining glutamic acid in the rat olfactory cyclic nucleotide-gated channel controls external spermine block.
    Nevin ST; Haddrill JL; Lynch JW
    Neurosci Lett; 2000 Dec; 296(2-3):163-7. PubMed ID: 11109006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel.
    Qu W; Moorhouse AJ; Chandra M; Pierce KD; Lewis TM; Barry PH
    J Gen Physiol; 2006 Apr; 127(4):375-89. PubMed ID: 16533895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological characteristics of rat gustatory cyclic nucleotide--gated channel expressed in Xenopus oocytes.
    Lee HM; Park YS; Kim W; Park CS
    J Neurophysiol; 2001 Jun; 85(6):2335-49. PubMed ID: 11387380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of tetracaine block of cyclic nucleotide-gated channels.
    Fodor AA; Gordon SE; Zagotta WN
    J Gen Physiol; 1997 Jan; 109(1):3-14. PubMed ID: 8997661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudechetoxin binds to the pore turret of cyclic nucleotide-gated ion channels.
    Brown RL; Lynch LL; Haley TL; Arsanjani R
    J Gen Physiol; 2003 Dec; 122(6):749-60. PubMed ID: 14638933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Block of the cyclic GMP-gated channel of vertebrate rod and cone photoreceptors by l-cis-diltiazem.
    Haynes LW
    J Gen Physiol; 1992 Nov; 100(5):783-801. PubMed ID: 1282145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for ligand selectivity of heteromeric olfactory cyclic nucleotide-gated channels.
    Shapiro MS; Zagotta WN
    Biophys J; 2000 May; 78(5):2307-20. PubMed ID: 10777729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-channel kinetics of the rat olfactory cyclic nucleotide-gated channel expressed in Xenopus oocytes.
    Li J; Lester HA
    Mol Pharmacol; 1999 May; 55(5):883-93. PubMed ID: 10220567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating.
    Henrikson CA; Xue T; Dong P; Sang D; Marban E; Li RA
    J Biol Chem; 2003 Apr; 278(16):13647-54. PubMed ID: 12582169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
    McNulty MM; Edgerton GB; Shah RD; Hanck DA; Fozzard HA; Lipkind GM
    J Physiol; 2007 Jun; 581(Pt 2):741-55. PubMed ID: 17363383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration dependence of sodium permeation and sodium ion interactions in the cyclic AMP-gated channels of mammalian olfactory receptor neurons.
    Balasubramanian S; Lynch JW; Barry PH
    J Membr Biol; 1997 Sep; 159(1):41-52. PubMed ID: 9309209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage sensor movement and cAMP binding allosterically regulate an inherently voltage-independent closed-open transition in HCN channels.
    Chen S; Wang J; Zhou L; George MS; Siegelbaum SA
    J Gen Physiol; 2007 Feb; 129(2):175-88. PubMed ID: 17261842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel.
    Morrill JA; MacKinnon R
    J Gen Physiol; 1999 Jul; 114(1):71-83. PubMed ID: 10398693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants of a Ca2+-binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates.
    Seifert R; Eismann E; Ludwig J; Baumann A; Kaupp UB
    EMBO J; 1999 Jan; 18(1):119-30. PubMed ID: 9878056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inward rectification by polyamines in mouse Kir2.1 channels: synergy between blocking components.
    Xie LH; John SA; Weiss JN
    J Physiol; 2003 Jul; 550(Pt 1):67-82. PubMed ID: 12740427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide-gated channels.
    Brady JD; Rich ED; Martens JR; Karpen JW; Varnum MD; Brown RL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15635-40. PubMed ID: 17032767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct block of hERG potassium channels by the protein kinase C inhibitor bisindolylmaleimide I (GF109203X).
    Thomas D; Hammerling BC; Wimmer AB; Wu K; Ficker E; Kuryshev YA; Scherer D; Kiehn J; Katus HA; Schoels W; Karle CA
    Cardiovasc Res; 2004 Dec; 64(3):467-76. PubMed ID: 15537500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.