These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 15929162)
1. Are conical intersections responsible for the ultrafast processes of adenine, protonated adenine, and the corresponding nucleosides? Brøndsted Nielsen S; Sølling TI Chemphyschem; 2005 Jul; 6(7):1276-81. PubMed ID: 15929162 [TBL] [Abstract][Full Text] [Related]
2. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. Perun S; Sobolewski AL; Domcke W J Am Chem Soc; 2005 May; 127(17):6257-65. PubMed ID: 15853331 [TBL] [Abstract][Full Text] [Related]
3. Conical intersections involving the dissociative 1pisigma* state in 9H-adenine: a quantum chemical ab initio study. Credo Chung W; Lan Z; Ohtsuki Y; Shimakura N; Domcke W; Fujimura Y Phys Chem Chem Phys; 2007 May; 9(17):2075-84. PubMed ID: 17464388 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study toward understanding ultrafast internal conversion of excited 9H-adenine. Chen H; Li S J Phys Chem A; 2005 Sep; 109(38):8443-6. PubMed ID: 16834239 [TBL] [Abstract][Full Text] [Related]
6. Nonadiabatic deactivation of 9H-adenine: a comprehensive picture based on mixed quantum-classical dynamics. Barbatti M; Lischka H J Am Chem Soc; 2008 May; 130(21):6831-9. PubMed ID: 18444646 [TBL] [Abstract][Full Text] [Related]
7. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. Takeuchi S; Tahara T J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312 [TBL] [Abstract][Full Text] [Related]
8. QM/MM nonadiabatic decay dynamics of 9H-adenine in aqueous solution. Lan Z; Lu Y; Fabiano E; Thiel W Chemphyschem; 2011 Jul; 12(10):1989-98. PubMed ID: 21674744 [TBL] [Abstract][Full Text] [Related]
9. A three-state model for the photophysics of guanine. Serrano-Andrés L; Merchán M; Borin AC J Am Chem Soc; 2008 Feb; 130(8):2473-84. PubMed ID: 18215036 [TBL] [Abstract][Full Text] [Related]
10. A resonance Raman spectroscopic and CASSCF investigation of the Franck-Condon region structural dynamics and conical intersections of thiophene. Wu XF; Zheng X; Wang HG; Zhao YY; Guan X; Phillips DL; Chen X; Fang W J Chem Phys; 2010 Oct; 133(13):134507. PubMed ID: 20942546 [TBL] [Abstract][Full Text] [Related]
12. Details of the excited-state potential energy surfaces of adenine by coupled cluster techniques. Benda Z; Szalay PG J Phys Chem A; 2014 Aug; 118(32):6197-207. PubMed ID: 25026452 [TBL] [Abstract][Full Text] [Related]
13. The electronic spectrum of protonated adenine: theory and experiment. Marian C; Nolting D; Weinkauf R Phys Chem Chem Phys; 2005 Sep; 7(18):3306-16. PubMed ID: 16240045 [TBL] [Abstract][Full Text] [Related]
14. The conical intersection dominates the generation of tropospheric hydroxyl radicals from NO2 and H2O. Fang Q; Han J; Jiang J; Chen X; Fang W J Phys Chem A; 2010 Apr; 114(13):4601-8. PubMed ID: 20235498 [TBL] [Abstract][Full Text] [Related]
15. Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics. Baloïtcha E; Balint-Kurti GG J Chem Phys; 2005 Jul; 123(1):014306. PubMed ID: 16035834 [TBL] [Abstract][Full Text] [Related]
16. A three-state model for the photophysics of adenine. Serrano-Andrés L; Merchán M; Borin AC Chemistry; 2006 Aug; 12(25):6559-71. PubMed ID: 16789030 [TBL] [Abstract][Full Text] [Related]
17. Excited-state potential energy surface for the photophysics of adenine. Blancafort L J Am Chem Soc; 2006 Jan; 128(1):210-9. PubMed ID: 16390149 [TBL] [Abstract][Full Text] [Related]