These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 15929287)

  • 61. High-resolution simultaneous three-photon fluorescence and third-harmonic-generation microscopy.
    Chu SW; Tai SP; Ho CL; Lin CH; Sun CK
    Microsc Res Tech; 2005 Mar; 66(4):193-7. PubMed ID: 15889423
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High efficiency beam splitter for multifocal multiphoton microscopy.
    Nielsen T; Fricke M; Hellweg D; Andresen P
    J Microsc; 2001 Mar; 201(Pt 3):368-76. PubMed ID: 11240852
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced two-photon fluorescence excitation by resonant grating waveguide structures.
    Soria S; Katchalski T; Teitelbaum E; Friesem AA; Marowsky G
    Opt Lett; 2004 Sep; 29(17):1989-91. PubMed ID: 15455756
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope.
    Flusberg BA; Jung JC; Cocker ED; Anderson EP; Schnitzer MJ
    Opt Lett; 2005 Sep; 30(17):2272-4. PubMed ID: 16190441
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Parallelized STED fluorescence nanoscopy.
    Bingen P; Reuss M; Engelhardt J; Hell SW
    Opt Express; 2011 Nov; 19(24):23716-26. PubMed ID: 22109398
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microbeam-integrated multiphoton imaging system.
    Bigelow AW; Geard CR; Randers-Pehrson G; Brenner DJ
    Rev Sci Instrum; 2008 Dec; 79(12):123707. PubMed ID: 19123569
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-speed confocal fluorescence imaging with a novel line scanning microscope.
    Wolleschensky R; Zimmermann B; Kempe M
    J Biomed Opt; 2006; 11(6):064011. PubMed ID: 17212534
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.
    Yih JN; Hu YY; Sie YD; Cheng LC; Lien CH; Chen SJ
    Opt Lett; 2014 Jun; 39(11):3134-7. PubMed ID: 24875995
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue.
    Yoshitake T; Giacomelli MG; Cahill LC; Schmolze DB; Vardeh H; Faulkner-Jones BE; Connolly JL; Fujimoto JG
    J Biomed Opt; 2016 Dec; 21(12):126021. PubMed ID: 28032121
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improved intravital microscopy via synchronization of respiration and holder stabilization.
    Lee S; Vinegoni C; Feruglio PF; Weissleder R
    J Biomed Opt; 2012 Sep; 17(9):96018-1. PubMed ID: 23085919
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Guiding a confocal microscope by single fluorescent nanoparticles.
    Cang H; Xu CS; Montiel D; Yang H
    Opt Lett; 2007 Sep; 32(18):2729-31. PubMed ID: 17873950
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective.
    Göbel W; Kerr JN; Nimmerjahn A; Helmchen F
    Opt Lett; 2004 Nov; 29(21):2521-3. PubMed ID: 15584281
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 4Pi microscopy with linear fluorescence excitation.
    Lang MC; Engelhardt J; Hell SW
    Opt Lett; 2007 Feb; 32(3):259-61. PubMed ID: 17215938
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nano-FROG: Frequency resolved optical gating by a nanometric object.
    Extermann J; Bonacina L; Courvoisier F; Kiselev D; Mugnier Y; Le Dantec R; Galez C; Wolf JP
    Opt Express; 2008 Jul; 16(14):10405-11. PubMed ID: 18607452
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images.
    Heintzmann R; Hanley QS; Arndt-Jovin D; Jovin TM
    J Microsc; 2001 Nov; 204(Pt 2):119-35. PubMed ID: 11737545
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of the dispersion compensation of acousto-optic deflectors used for multiphoton imaging.
    Zeng S; Lv X; Bi K; Zhan C; Li D; Chen WR; Xiong W; Jacques SL; Luo Q
    J Biomed Opt; 2007; 12(2):024015. PubMed ID: 17477730
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A series of flexible design adaptations to the Nikon E-C1 and E-C2 confocal microscope systems for UV, multiphoton and FLIM imaging.
    Botchway SW; Scherer KM; Hook S; Stubbs CD; Weston E; Bisby RH; Parker AW
    J Microsc; 2015 Apr; 258(1):68-78. PubMed ID: 25664385
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Confocal theta line-scanning microscope for imaging human tissues.
    Dwyer PJ; DiMarzio CA; Rajadhyaksha M
    Appl Opt; 2007 Apr; 46(10):1843-51. PubMed ID: 17356629
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Novel diode-pumped infrared tunable laser system for multi-photon microscopy.
    Deguil N; Mottay E; Salin F; Legros P; Choquet D
    Microsc Res Tech; 2004 Jan; 63(1):23-6. PubMed ID: 14677130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.