These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Interaction of Mg+2 with beef heart mitochondrial ATPase (F1). Hackney DD Biochem Biophys Res Commun; 1979 Nov; 91(1):233-8. PubMed ID: 160225 [No Abstract] [Full Text] [Related]
3. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase. Klein G; Lunardi J; Vignais PV Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765 [TBL] [Abstract][Full Text] [Related]
6. F1-ATPase from different submitochondrial particles. Bruni A; Pitotti A; Palatini P; Dabbeni-Sala F; Bigon E Biochim Biophys Acta; 1979 Mar; 545(3):404-14. PubMed ID: 154927 [TBL] [Abstract][Full Text] [Related]
7. Divalent metals in beef heart mitochondrial adenosine triphosphatase. Demonstration of the metals in membrane-bound enzyme and studies of the interconversion of the "1-Mg" and "2-Mg" forms of the enzyme. Senior AE J Biol Chem; 1981 May; 256(10):4763-7. PubMed ID: 6453121 [TBL] [Abstract][Full Text] [Related]
8. Response of the adenosine triphosphatase activity of the soluble latent F1 enzyme from beef heart mitochondria to changes in Mg2+ and H+ concentrations. Feinstein DL; Moudrianakis EN J Biol Chem; 1984 Apr; 259(7):4230-6. PubMed ID: 6231291 [TBL] [Abstract][Full Text] [Related]
10. Mg2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1. Minkov IB; Fitin AF; Vasilyeva EA; Vinogradov AD Biochem Biophys Res Commun; 1979 Aug; 89(4):1300-6. PubMed ID: 159048 [No Abstract] [Full Text] [Related]
11. The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphatase. Grubmeyer C; Penefsky HS J Biol Chem; 1981 Apr; 256(8):3718-27. PubMed ID: 6452454 [TBL] [Abstract][Full Text] [Related]
12. Adenine nucleotide binding sites on beef heart F1-ATPase. Evidence for three exchangeable sites that are distinct from three noncatalytic sites. Cross RL; Nalin CM J Biol Chem; 1982 Mar; 257(6):2874-81. PubMed ID: 6460765 [No Abstract] [Full Text] [Related]
13. Stabilization of rat liver mitochondrial F1-adenosine triphosphatase during chloroform-induced solubilization. Kopecký J; Kuzela S; Kraml J; Drahota Z Biochim Biophys Acta; 1979 Aug; 547(2):177-87. PubMed ID: 157160 [TBL] [Abstract][Full Text] [Related]
14. Properties of chloroform-released ox heart mitochondrial adenosine triphosphatase; comparison with F1-adenosine triphosphatase and factor A [proceedings]. Lowe PN; Baum H; Beechey RB Biochem Soc Trans; 1979 Oct; 7(5):1127-9. PubMed ID: 159844 [No Abstract] [Full Text] [Related]
15. Optimization of the purification of mitochondrial F1-adenosine triphosphatase. Penin F; Godinot C; Gautheron DC Biochim Biophys Acta; 1979 Oct; 548(1):63-71. PubMed ID: 158386 [TBL] [Abstract][Full Text] [Related]
16. Localisation of adenine nucleotide-binding sites on beef-heart mitochondrial ATPase by photolabelling with 8-azido-ADP and 8-azido-ATP. Wagenvoord RJ; van der Kraan I; Kemp A Biochim Biophys Acta; 1979 Oct; 548(1):85-95. PubMed ID: 158387 [TBL] [Abstract][Full Text] [Related]
17. Beef heart mitochondrial adenosine triphosphatase-catalyzed formation of a transition state analog in ATP synthesis. Bossard MJ; Vik TA; Schuster SM J Biol Chem; 1980 Jun; 255(11):5342-6. PubMed ID: 6445363 [TBL] [Abstract][Full Text] [Related]