BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15930112)

  • 1. A novel G protein-coupled receptor, related to GPR4, is required for assembly of the cortical actin skeleton in early Xenopus embryos.
    Tao Q; Lloyd B; Lang S; Houston D; Zorn A; Wylie C
    Development; 2005 Jun; 132(12):2825-36. PubMed ID: 15930112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of Cdc42 through the GAP domain of RLIP participates in remodeling of the actin cytoskeleton and is involved in Xenopus gastrulation.
    Boissel L; Houssin N; Chikh A; Rynditch A; Van Hove L; Moreau J
    Dev Biol; 2007 Dec; 312(1):331-43. PubMed ID: 17950267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing.
    Kofron M; Heasman J; Lang SA; Wylie CC
    J Cell Biol; 2002 Aug; 158(4):695-708. PubMed ID: 12186853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysophosphatidic acid signaling controls cortical actin assembly and cytoarchitecture in Xenopus embryos.
    Lloyd B; Tao Q; Lang S; Wylie C
    Development; 2005 Feb; 132(4):805-16. PubMed ID: 15659484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo.
    Tao Q; Nandadasa S; McCrea PD; Heasman J; Wylie C
    Development; 2007 Jul; 134(14):2651-61. PubMed ID: 17567666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and developmental expression of Xenopus Enabled (Xena).
    Xanthos JB; Wanner SJ; Miller JR
    Dev Dyn; 2005 Jun; 233(2):631-7. PubMed ID: 15778995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal Tgif1 regulates nodal gene expression in Xenopus.
    Kerr TC; Cuykendall TN; Luettjohann LC; Houston DW
    Dev Dyn; 2008 Oct; 237(10):2862-73. PubMed ID: 18816846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pEg6, a spire family member, is a maternal gene encoding a vegetally localized mRNA in Xenopus embryos.
    Le Goff C; Laurent V; Le Bon K; Tanguy G; Couturier A; Le Goff X; Le Guellec R
    Biol Cell; 2006 Dec; 98(12):697-708. PubMed ID: 16789907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RLIP mediates downstream signalling from RalB to the actin cytoskeleton during Xenopus early development.
    Lebreton S; Boissel L; Iouzalen N; Moreau J
    Mech Dev; 2004 Dec; 121(12):1481-94. PubMed ID: 15511640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of RhoB in the developing Xenopus laevis embryo.
    Vignal E; de Santa Barbara P; Guémar L; Donnay JM; Fort P; Faure S
    Gene Expr Patterns; 2007 Jan; 7(3):282-8. PubMed ID: 17049930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the 38 kDa protein lacking in gastrula-arrested mutant Xenopus embryos.
    Tanaka TS; Nishiumi F; Komiya T; Ikenishi K
    Int J Dev Biol; 2010; 54(8-9):1347-53. PubMed ID: 20712004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.
    Seigfried FA; Dietmann P; Kühl M; Kühl SJ
    Gene Expr Patterns; 2018 Jun; 28():54-61. PubMed ID: 29462671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis.
    Massé K; Kyuno J; Bhamra S; Jones EA
    Int J Dev Biol; 2010; 54(8-9):1361-74. PubMed ID: 20712001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersectin 2 nucleotide exchange factor regulates Cdc42 activity during Xenopus early development.
    Novokhatska O; Dergai M; Houssin N; Tsyba L; Moreau J; Rynditch A
    Biochem Biophys Res Commun; 2011 May; 408(4):663-8. PubMed ID: 21530493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis.
    Lavery DL; Davenport IR; Turnbull YD; Wheeler GN; Hoppler S
    Dev Dyn; 2008 Mar; 237(3):768-79. PubMed ID: 18224714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germes is involved in translocation of germ plasm during development of Xenopus primordial germ cells.
    Yamaguchi T; Taguchi A; Watanabe K; Orii H
    Int J Dev Biol; 2013; 57(5):439-43. PubMed ID: 23873375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Xenopus RalB and its involvement in F-actin control during early development.
    Moreau J; Lebreton S; Iouzalen N; Mechali M
    Dev Biol; 1999 May; 209(2):268-81. PubMed ID: 10328920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic analysis of Xenopus organizer function.
    Hufton AL; Vinayagam A; Suhai S; Baker JC
    BMC Dev Biol; 2006 Jun; 6():27. PubMed ID: 16756679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid.
    El-Hodiri HM; Seufert DW; Nekkalapudi S; Prescott NL; Kelly LE; Jamrich M
    Int J Dev Biol; 2005; 49(7):881-4. PubMed ID: 16172985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.