BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15930458)

  • 1. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1.
    Darcel NP; Liou AP; Tomé D; Raybould HE
    J Nutr; 2005 Jun; 135(6):1491-5. PubMed ID: 15930458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat.
    Glatzle J; Wang Y; Adelson DW; Kalogeris TJ; Zittel TT; Tso P; Wei JY; Raybould HE
    J Physiol; 2003 Jul; 550(Pt 2):657-64. PubMed ID: 12766241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1.
    Liou AP; Chavez DI; Espero E; Hao S; Wank SA; Raybould HE
    Am J Physiol Gastrointest Liver Physiol; 2011 May; 300(5):G895-902. PubMed ID: 21311026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat.
    Zhu JX; Zhu XY; Owyang C; Li Y
    J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat.
    Zhang X; Fogel R
    Auton Neurosci; 2003 Jan; 103(1-2):19-37. PubMed ID: 12531396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs.
    Bligny D; Blat S; Chauvin A; Guérin S; Malbert CH
    J Physiol Pharmacol; 2005 Jun; 56 Suppl 3():89-100. PubMed ID: 16077197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway.
    Glatzle J; Darcel N; Rechs AJ; Kalogeris TJ; Tso P; Raybould HE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R354-9. PubMed ID: 15117731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of vagal afferent responses to duodenal loads and exogenous CCK in rats.
    Schwartz GJ; Tougas G; Moran TH
    Peptides; 1995; 16(4):707-11. PubMed ID: 7479306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum.
    Peters JH; Ritter RC; Simasko SM
    Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1544-9. PubMed ID: 16384857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCK elicits and modulates vagal afferent activity arising from gastric and duodenal sites.
    Schwartz GJ; Moran TH
    Ann N Y Acad Sci; 1994 Mar; 713():121-8. PubMed ID: 8185153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat.
    Schwartz GJ; Moran TH
    Am J Physiol; 1998 May; 274(5):R1236-42. PubMed ID: 9644035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R303-8. PubMed ID: 8048636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CCK-8 activates hepatic vagal C-fiber afferents.
    Cox JE; Randich A
    Brain Res; 1997 Nov; 776(1-2):189-94. PubMed ID: 9439812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of the gastric vagal afferent activity to cholecystokinin in rats lacking type A cholecystokinin receptors.
    Kurosawa M; Bucinskaite V; Taniguchi T; Miyasaka K; Funakoshi A; Lundeberg T
    J Auton Nerv Syst; 1999 Jan; 75(1):51-9. PubMed ID: 9935269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ.
    Schwartz GJ; Moran TH; White WO; Ladenheim EE
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1726-33. PubMed ID: 9227583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capsaicin-sensitive vagal afferents and CCK in inhibition of gastric motor function induced by intestinal nutrients.
    Raybould HE
    Peptides; 1991; 12(6):1279-83. PubMed ID: 1815214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre.
    Blackshaw LA; Grundy D
    J Auton Nerv Syst; 1990 Dec; 31(3):191-201. PubMed ID: 2084184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.
    Rasmussen BA; Breen DM; Luo P; Cheung GW; Yang CS; Sun B; Kokorovic A; Rong W; Lam TK
    Gastroenterology; 2012 Apr; 142(4):834-843.e3. PubMed ID: 22245844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents.
    van de Wall EH; Duffy P; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R695-703. PubMed ID: 15905220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanosensitive duodenal afferents contribute to vagal modulation of inflammation in the rat.
    Miao FJ; Green PG; Levine JD
    J Physiol; 2004 Jan; 554(Pt 1):227-35. PubMed ID: 14678504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.