These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 15930490)

  • 1. Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining.
    Zingler N; Willhoeft U; Brose HP; Schoder V; Jahns T; Hanschmann KM; Morrish TA; Löwer J; Schumann GG
    Genome Res; 2005 Jun; 15(6):780-9. PubMed ID: 15930490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair.
    Srikanta D; Sen SK; Huang CT; Conlin EM; Rhodes RM; Batzer MA
    Genomics; 2009 Mar; 93(3):205-12. PubMed ID: 18951971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L1 integration in a transgenic mouse model.
    Babushok DV; Ostertag EM; Courtney CE; Choi JM; Kazazian HH
    Genome Res; 2006 Feb; 16(2):240-50. PubMed ID: 16365384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structures of mouse and human L1 elements reflect their insertion mechanism.
    Martin SL; Li WL; Furano AV; Boissinot S
    Cytogenet Genome Res; 2005; 110(1-4):223-8. PubMed ID: 16093676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion.
    Wimmer K; Callens T; Wernstedt A; Messiaen L
    PLoS Genet; 2011 Nov; 7(11):e1002371. PubMed ID: 22125493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome.
    Sen SK; Huang CT; Han K; Batzer MA
    Nucleic Acids Res; 2007; 35(11):3741-51. PubMed ID: 17517773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion.
    Wagstaff BJ; Hedges DJ; Derbes RS; Campos Sanchez R; Chiaromonte F; Makova KD; Roy-Engel AM
    PLoS Genet; 2012; 8(8):e1002842. PubMed ID: 22912586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins.
    Srikanta D; Sen SK; Conlin EM; Batzer MA
    Gene; 2009 Dec; 448(2):233-41. PubMed ID: 19501635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of pre-insertion loci of de novo L1 insertions.
    Gasior SL; Preston G; Hedges DJ; Gilbert N; Moran JV; Deininger PL
    Gene; 2007 Apr; 390(1-2):190-8. PubMed ID: 17067767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages.
    Han K; Sen SK; Wang J; Callinan PA; Lee J; Cordaux R; Liang P; Batzer MA
    Nucleic Acids Res; 2005; 33(13):4040-52. PubMed ID: 16034026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription.
    Yu F; Zingler N; Schumann G; Strätling WH
    Nucleic Acids Res; 2001 Nov; 29(21):4493-501. PubMed ID: 11691937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important.
    Kvikstad EM; Makova KD
    Genome Res; 2010 May; 20(5):600-13. PubMed ID: 20219940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination.
    Nazaryan-Petersen L; Bertelsen B; Bak M; Jønson L; Tommerup N; Hancks DC; Tümer Z
    Hum Mutat; 2016 Apr; 37(4):385-95. PubMed ID: 26929209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease.
    Chen JM; Stenson PD; Cooper DN; Férec C
    Hum Genet; 2005 Sep; 117(5):411-27. PubMed ID: 15983781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition.
    Ostertag EM; Kazazian HH
    Genome Res; 2001 Dec; 11(12):2059-65. PubMed ID: 11731496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple fates of L1 retrotransposition intermediates in cultured human cells.
    Gilbert N; Lutz S; Morrish TA; Moran JV
    Mol Cell Biol; 2005 Sep; 25(17):7780-95. PubMed ID: 16107723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The insertional history of an active family of L1 retrotransposons in humans.
    Boissinot S; Entezam A; Young L; Munson PJ; Furano AV
    Genome Res; 2004 Jul; 14(7):1221-31. PubMed ID: 15197167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition.
    Kroutter EN; Belancio VP; Wagstaff BJ; Roy-Engel AM
    PLoS Genet; 2009 Apr; 5(4):e1000458. PubMed ID: 19390602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved 3' UTR stem-loop structure in L1 and Alu transposons in human genome: possible role in retrotransposition.
    Grechishnikova D; Poptsova M
    BMC Genomics; 2016 Dec; 17(1):992. PubMed ID: 27914481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem insertions of Alu elements.
    El-Sawy M; Deininger P
    Cytogenet Genome Res; 2005; 108(1-3):58-62. PubMed ID: 15545716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.