These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 15930492)
1. Operon formation is driven by co-regulation and not by horizontal gene transfer. Price MN; Huang KH; Arkin AP; Alm EJ Genome Res; 2005 Jun; 15(6):809-19. PubMed ID: 15930492 [TBL] [Abstract][Full Text] [Related]
2. Gene cluster analysis method identifies horizontally transferred genes with high reliability and indicates that they provide the main mechanism of operon gain in 8 species of gamma-Proteobacteria. Homma K; Fukuchi S; Nakamura Y; Gojobori T; Nishikawa K Mol Biol Evol; 2007 Mar; 24(3):805-13. PubMed ID: 17185745 [TBL] [Abstract][Full Text] [Related]
3. The life-cycle of operons. Price MN; Arkin AP; Alm EJ PLoS Genet; 2006 Jun; 2(6):e96. PubMed ID: 16789824 [TBL] [Abstract][Full Text] [Related]
4. The impact of horizontal gene transfer in shaping operons and protein interaction networks--direct evidence of preferential attachment. Davids W; Zhang Z BMC Evol Biol; 2008 Jan; 8():23. PubMed ID: 18218112 [TBL] [Abstract][Full Text] [Related]
5. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Omelchenko MV; Makarova KS; Wolf YI; Rogozin IB; Koonin EV Genome Biol; 2003; 4(9):R55. PubMed ID: 12952534 [TBL] [Abstract][Full Text] [Related]
6. Evidence against the selfish operon theory. Pál C; Hurst LD Trends Genet; 2004 Jun; 20(6):232-4. PubMed ID: 15145575 [TBL] [Abstract][Full Text] [Related]
7. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Lawrence J Curr Opin Genet Dev; 1999 Dec; 9(6):642-8. PubMed ID: 10607610 [TBL] [Abstract][Full Text] [Related]
8. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. Conway T; Creecy JP; Maddox SM; Grissom JE; Conkle TL; Shadid TM; Teramoto J; San Miguel P; Shimada T; Ishihama A; Mori H; Wanner BL mBio; 2014 Jul; 5(4):e01442-14. PubMed ID: 25006232 [TBL] [Abstract][Full Text] [Related]
9. Optimal gene partition into operons correlates with gene functional order. Zaslaver A; Mayo A; Ronen M; Alon U Phys Biol; 2006 Sep; 3(3):183-9. PubMed ID: 17021382 [TBL] [Abstract][Full Text] [Related]
10. The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands. Ho WS; Ou HY; Yeo CC; Thong KL BMC Genomics; 2015 Mar; 16(1):199. PubMed ID: 25879448 [TBL] [Abstract][Full Text] [Related]
11. Strength and Regulation of Seven rRNA Promoters in Escherichia coli. Maeda M; Shimada T; Ishihama A PLoS One; 2015; 10(12):e0144697. PubMed ID: 26717514 [TBL] [Abstract][Full Text] [Related]
12. Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Liu X; Matsumura P Mol Microbiol; 1996 Aug; 21(3):613-20. PubMed ID: 8866483 [TBL] [Abstract][Full Text] [Related]
13. Natural selection for operons depends on genome size. Nuñez PA; Romero H; Farber MD; Rocha EP Genome Biol Evol; 2013; 5(11):2242-54. PubMed ID: 24201372 [TBL] [Abstract][Full Text] [Related]
14. The operonic location of auto-transcriptional repressors is highly conserved in bacteria. Rubinstein ND; Zeevi D; Oren Y; Segal G; Pupko T Mol Biol Evol; 2011 Dec; 28(12):3309-18. PubMed ID: 21690561 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. Goh EB; Bledsoe PJ; Chen LL; Gyaneshwar P; Stewart V; Igo MM J Bacteriol; 2005 Jul; 187(14):4890-9. PubMed ID: 15995204 [TBL] [Abstract][Full Text] [Related]
16. Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Price MN; Dehal PS; Arkin AP Genome Biol; 2008 Jan; 9(1):R4. PubMed ID: 18179685 [TBL] [Abstract][Full Text] [Related]
17. Eukaryotic Acquisition of a Bacterial Operon. Kominek J; Doering DT; Opulente DA; Shen XX; Zhou X; DeVirgilio J; Hulfachor AB; Groenewald M; Mcgee MA; Karlen SD; Kurtzman CP; Rokas A; Hittinger CT Cell; 2019 Mar; 176(6):1356-1366.e10. PubMed ID: 30799038 [TBL] [Abstract][Full Text] [Related]
18. Regulation of nrf operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity. Godfrey RE; Lee DJ; Busby SJW; Browning DF Mol Microbiol; 2017 May; 104(4):580-594. PubMed ID: 28211111 [TBL] [Abstract][Full Text] [Related]
19. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Acinas SG; Marcelino LA; Klepac-Ceraj V; Polz MF J Bacteriol; 2004 May; 186(9):2629-35. PubMed ID: 15090503 [TBL] [Abstract][Full Text] [Related]
20. Computational prediction of operons in Synechococcus sp. WH8102. Chen X; Su Z; Xu Y; Jiang T Genome Inform; 2004; 15(2):211-22. PubMed ID: 15706507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]