These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15930574)

  • 1. Fermentability of water-soluble portion to ethanol obtained by supercritical water treatment of lignocellulosics.
    Miyafuji H; Nakata T; Ehara K; Saka S
    Appl Biochem Biotechnol; 2005; 121-124():963-71. PubMed ID: 15930574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce.
    Horváth IS; Sjöde A; Alriksson B; Jönsson LJ; Nilvebrant NO
    Appl Biochem Biotechnol; 2005; 121-124():1031-44. PubMed ID: 15930579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of wood ash treatment on improving the fermentability of wood hydrolysate.
    Miyafuji H; Danner H; Neureiter M; Thomasser C; Braun R
    Biotechnol Bioeng; 2003 Nov; 84(3):390-3. PubMed ID: 12968293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonium hydroxide detoxification of spruce acid hydrolysates.
    Alriksson B; Horváth IS; Sjöde A; Nilvebrant NO; Jönsson LJ
    Appl Biochem Biotechnol; 2005; 121-124():911-22. PubMed ID: 15930570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol.
    Sassner P; Galbe M; Zacchi G
    Appl Biochem Biotechnol; 2005; 121-124():1101-17. PubMed ID: 15930584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates.
    Alriksson B; Sjöde A; Nilvebrant NO; Jönsson LJ
    Appl Biochem Biotechnol; 2006; 129-132():599-611. PubMed ID: 16915672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis.
    Nakata T; Miyafuji H; Saka S
    Appl Biochem Biotechnol; 2006; 129-132():476-85. PubMed ID: 16915663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment of switchgrass by ammonia fiber explosion (AFEX).
    Alizadeh H; Teymouri F; Gilbert TI; Dale BE
    Appl Biochem Biotechnol; 2005; 121-124():1133-41. PubMed ID: 15930586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production.
    Ohgren K; Galbe M; Zacchi G
    Appl Biochem Biotechnol; 2005; 121-124():1055-67. PubMed ID: 15930581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing ethanol fermentability of an artificial acid hydrolyzate with anion exchange resin treatment.
    Zhang Y; Gao J; Ntoni J; Begonia MF; Lee KS; Hwang HM
    Prep Biochem Biotechnol; 2008; 38(2):191-200. PubMed ID: 18320470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme pretreatment of grass lignocellulose for potential high-value co-products and an improved fermentable substrate.
    Anderson WF; Peterson J; Akin DE; Morrison WH
    Appl Biochem Biotechnol; 2005; 121-124():303-10. PubMed ID: 15917608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars.
    Keating JD; Robinson J; Cotta MA; Saddler JN; Mansfield SD
    J Ind Microbiol Biotechnol; 2004 Jun; 31(5):235-44. PubMed ID: 15252719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corn stover fractions and bioenergy: chemical composition, structure, and response to enzyme pretreatment.
    Akin DE; Morrison WH; Rigsby LL; Barton FE; Himmelsbach DS; Hicks KB
    Appl Biochem Biotechnol; 2006; 129-132():104-16. PubMed ID: 16915634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment of corn stover by soaking in aqueous ammonia.
    Kim TH; Lee YY
    Appl Biochem Biotechnol; 2005; 121-124():1119-31. PubMed ID: 15930585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxification of lignocellulose hydrolysates with ion-exchange resins.
    Nilvebrant NO; Reimann A; Larsson S; Jönsson LJ
    Appl Biochem Biotechnol; 2001; 91-93():35-49. PubMed ID: 11963864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of sequential aqueous steam treatments to the fractionation of softwood.
    Shahbazi A; Li Y; Mims MR
    Appl Biochem Biotechnol; 2005; 121-124():973-87. PubMed ID: 15930575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content.
    Pan X; Xie D; Gilkes N; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2005; 121-124():1069-79. PubMed ID: 15930582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH.
    Kádár Z; Maltha SF; Szengyel Z; Réczey K; de Laat W
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):847-58. PubMed ID: 18478439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
    Nichols NN; Dien BS; Guisado GM; López MJ
    Appl Biochem Biotechnol; 2005; 121-124():379-90. PubMed ID: 15917615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.