BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15930599)

  • 1. Addendum to the IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL).
    Aukett RJ; Burns JE; Greener AG; Harrison RM; Moretti C; Nahum AE; Rosser KE;
    Phys Med Biol; 2005 Jun; 50(12):2739-48. PubMed ID: 15930599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10-300 kV generating potential). Institution of Physics and Engineering in Medicine and Biology.
    Phys Med Biol; 1996 Dec; 41(12):2605-25. PubMed ID: 8971972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the formalism used to determine the absorbed dose for low-energy x-ray beams.
    Chica U; Anguiano M; Lallena AM
    Phys Med Biol; 2008 Dec; 53(23):6963-77. PubMed ID: 19001702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetry measurements with an intra-operative x-ray device.
    Eaton DJ; Duck S
    Phys Med Biol; 2010 Jun; 55(12):N359-69. PubMed ID: 20505225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the chamber correction factor (k(ch)) for the UK secondary standard ionization chamber (NE2561/NE2611) using medium-energy x-rays.
    Rosser KE
    Phys Med Biol; 1998 Nov; 43(11):3195-206. PubMed ID: 9832011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kilovoltage x-ray dosimetry--an experimental comparison between different dosimetry protocols.
    Munck af Rosenschöld P; Nilsson P; Knöös T
    Phys Med Biol; 2008 Aug; 53(16):4431-42. PubMed ID: 18670053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canine anatomic phantom for preclinical dosimetry in internal emitter therapy.
    Padilla L; Lee C; Milner R; Shahlaee A; Bolch WE
    J Nucl Med; 2008 Mar; 49(3):446-52. PubMed ID: 18287264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the need for quality assurance in superficial kilovoltage radiotherapy.
    Austerlitz C; Mota H; Gay H; Campos D; Allison R; Sibata C
    Radiat Prot Dosimetry; 2008; 130(4):476-81. PubMed ID: 18325931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium borate TLD for determining the backscatter factors for low-energy x rays: comparison with chamber-based and Monte Carlo derived values.
    Coudin D; Marinello G
    Med Phys; 1998 Mar; 25(3):347-53. PubMed ID: 9547502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams.
    Ma CM; Seuntjens JP
    Phys Med Biol; 1999 Jan; 44(1):131-43. PubMed ID: 10071880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmark of penelope for low and medium energy X-rays.
    Chica U; Anguiano M; Lallena AM
    Phys Med; 2009 Jun; 25(2):51-7. PubMed ID: 18495512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A regional audit of kilovoltage X-rays--a single centre approach.
    Burton NL; Brimelow J; Welsh AD
    Br J Radiol; 2008 May; 81(965):422-6. PubMed ID: 18440944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The measurement of kappach factors for application with the IPEMB very low energy dosimetry protocol.
    Perrin BA; Whitehurst P; Cooper P; Hounsell AR
    Phys Med Biol; 2001 Jul; 46(7):1985-95. PubMed ID: 11474939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dosimetric evaluation of water equivalent phantoms for kilovoltage x-ray beams.
    Hill R; Holloway L; Baldock C
    Phys Med Biol; 2005 Nov; 50(21):N331-44. PubMed ID: 16237233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air kerma calibration factors and chamber correction values for PTW soft x-ray, NACP and Roos ionization chambers at very low x-ray energies.
    Ipe NE; Rosser KE; Moretti CJ; Manning JW; Palmer MJ
    Phys Med Biol; 2001 Aug; 46(8):2107-17. PubMed ID: 11512614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorimetric determination of kQ factors for NE 2561 and NE 2571 ionization chambers in 5 cm x 5 cm and 10 cm x 10 cm radiotherapy beams of 8 MV and 16 MV photons.
    Krauss A; Kapsch RP
    Phys Med Biol; 2007 Oct; 52(20):6243-59. PubMed ID: 17921583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorbed dose measurements of a handheld 50 kVP X-ray source in water with thermoluminescence dosemeters.
    Soares C; Drupieski C; Wingert B; Pritchett G; Pagonis V; O'Brien M; Sliski A; Bilski P; Olko P
    Radiat Prot Dosimetry; 2006; 120(1-4):78-82. PubMed ID: 16735571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric determination of the absorbed dose to water for medium-energy x-rays with generating voltages from 70 to 280 kV.
    Krauss A; Büermann L; Kramer HM; Selbach HJ
    Phys Med Biol; 2012 Oct; 57(19):6245-68. PubMed ID: 22975691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of photon beam flatness for radiation therapy.
    Olofsson J; Nyholm T; Ahnesjö A; Karlsson M
    Phys Med Biol; 2007 Mar; 52(6):1735-46. PubMed ID: 17327659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.
    Brede HJ; Greif KD; Hecker O; Heeg P; Heese J; Jones DT; Kluge H; Schardt D
    Phys Med Biol; 2006 Aug; 51(15):3667-82. PubMed ID: 16861773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.