These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 159306)
1. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. Hafner EW; Tabor CW; Tabor H J Biol Chem; 1979 Dec; 254(24):12419-26. PubMed ID: 159306 [TBL] [Abstract][Full Text] [Related]
2. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. Tabor H; Hafner EW; Tabor CW J Bacteriol; 1980 Dec; 144(3):952-6. PubMed ID: 7002915 [TBL] [Abstract][Full Text] [Related]
3. Polyamine biosynthesis in Escherichia coli: construction of polyamine-deficient mutants. Tabor H Med Biol; 1981 Dec; 59(5-6):389-93. PubMed ID: 7040834 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of polyamines in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase deletion mutants of Escherichia coli strain K-12. Panagiotidis CA; Blackburn S; Low KB; Canellakis ES Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4423-7. PubMed ID: 2440022 [TBL] [Abstract][Full Text] [Related]
5. Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. Chattopadhyay MK; Tabor CW; Tabor H J Bacteriol; 2009 Sep; 191(17):5549-52. PubMed ID: 19542271 [TBL] [Abstract][Full Text] [Related]
6. Streptomycin resistance (rpsL) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine [delta(speA-speB) delta specC]. Tabor H; Tabor CW; Cohn MS; Hafner EW J Bacteriol; 1981 Aug; 147(2):702-4. PubMed ID: 7021537 [TBL] [Abstract][Full Text] [Related]
7. Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. Cunningham-Rundles S; Maas WK J Bacteriol; 1975 Nov; 124(2):791-9. PubMed ID: 1102531 [TBL] [Abstract][Full Text] [Related]
8. Adjustment of polyamine contents in Escherichia coli. Kashiwagi K; Igarashi K J Bacteriol; 1988 Jul; 170(7):3131-5. PubMed ID: 3290196 [TBL] [Abstract][Full Text] [Related]
9. Polyamine stimulation of nucleic acid synthesis in an uninfected and phage-infected polyamine auxotroph of Escherichia coli K12 (arginine-agmatine ureohydrolase-putrescine-spermidine-lysine-cadaverine). Dion AS; Cohen SS Proc Natl Acad Sci U S A; 1972 Jan; 69(1):213-7. PubMed ID: 4550506 [TBL] [Abstract][Full Text] [Related]
10. Polyamine requirements of a conditional polyamine auxotroph of Escherichia coli. Munro GF; Bell CA J Bacteriol; 1973 Aug; 115(2):469-75. PubMed ID: 4579867 [TBL] [Abstract][Full Text] [Related]
11. Occurrence of polyamines in coliphages T5, phiX174 and in phage-infected bacteria. Bachrach U; Fischer R; Klein I J Gen Virol; 1975 Mar; 26(3):287-94. PubMed ID: 1091718 [TBL] [Abstract][Full Text] [Related]
12. Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. Igarashi K; Kashiwagi K; Hamasaki H; Miura A; Kakegawa T; Hirose S; Matsuzaki S J Bacteriol; 1986 Apr; 166(1):128-34. PubMed ID: 3514574 [TBL] [Abstract][Full Text] [Related]
13. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae. Tabor CW; Tabor H; Tyagi AK; Cohn MS Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461 [TBL] [Abstract][Full Text] [Related]
14. Effects of inhibitors of ornithine and S-adenosylmethionine decarboxylases on L6 myoblast proliferation. Stoscheck CM; Erwin BG; Florini JR; Richman RA; Pegg AE J Cell Physiol; 1982 Feb; 110(2):161-8. PubMed ID: 6802862 [TBL] [Abstract][Full Text] [Related]
15. Polyamines in the synthesis of bacteriophage deoxyribonucleic acid. II. Requirement for polyamines in T4 infection of a polyamine auxotroph. Dion AS; Cohen SS J Virol; 1972 Mar; 9(3):423-30. PubMed ID: 4552550 [TBL] [Abstract][Full Text] [Related]
16. Polyamines and regulation of ornithine biosynthesis in Escherichia coli. Cataldi AA; Algranati ID J Bacteriol; 1989 Apr; 171(4):1998-2002. PubMed ID: 2649483 [TBL] [Abstract][Full Text] [Related]
17. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Tabor CW Med Biol; 1981 Dec; 59(5-6):272-8. PubMed ID: 7040829 [TBL] [Abstract][Full Text] [Related]
18. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli. Raina A; Jansen M; Cohen SS J Bacteriol; 1967 Nov; 94(5):1684-96. PubMed ID: 4863983 [TBL] [Abstract][Full Text] [Related]
19. Expression of the cloned genes encoding the putrescine biosynthetic enzymes and methionine adenosyltransferase of Escherichia coli (speA, speB, speC and metK). Boyle SM; Markham GD; Hafner EW; Wright JM; Tabor H; Tabor CW Gene; 1984 Oct; 30(1-3):129-36. PubMed ID: 6392022 [TBL] [Abstract][Full Text] [Related]
20. Putrescine biosynthesis and export genes are essential for normal growth of avian pathogenic Escherichia coli. Guerra PR; Herrero-Fresno A; Ladero V; Redruello B; Dos Santos TP; Spiegelhauer MR; Jelsbak L; Olsen JE BMC Microbiol; 2018 Dec; 18(1):226. PubMed ID: 30587122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]