These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 159307)

  • 21. Chemical modification of arginine residues of porcine muscle acylphosphatase.
    Tamura T; Mizuno Y; Shiokawa H
    Biochim Biophys Acta; 1986 Mar; 870(2):234-41. PubMed ID: 3006778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents.
    Jackson DG; Hersh LB
    J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical modification of a functional arginine residue of rat liver glycine methyltransferase.
    Konishi K; Fujioka M
    Biochemistry; 1987 Dec; 26(25):8496-502. PubMed ID: 3442671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of arginine residues in the stimulation of the smooth-muscle plasma-membrane Ca2+ pump by negatively charged phospholipids.
    Missiaen L; Raeymaekers L; Droogmans G; Wuytack F; Casteels R
    Biochem J; 1989 Dec; 264(2):609-12. PubMed ID: 2557845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical modification of rabbit skeletal muscle phosphorylase kinase with phenylglyoxal.
    Soman G; Graves DJ
    Arch Biochem Biophys; 1986 Jul; 248(1):341-52. PubMed ID: 3089165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A functional arginine residue in the vacuolar H(+)-ATPase of higher plants.
    Bennett AB; Borcherts K
    Biochim Biophys Acta; 1990 Mar; 1023(1):119-23. PubMed ID: 1690574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Irreversible modification of red cell Ca2+ transport by phenylglyoxal.
    Raess BU
    Mol Pharmacol; 1993 Aug; 44(2):399-404. PubMed ID: 8394994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformation-sensitive modification of the type II calmodulin-dependent protein kinase by phenylglyoxal.
    King MM
    J Biol Chem; 1988 Apr; 263(10):4754-7. PubMed ID: 3350811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of myosin subfragment 1 by carbodiimide in the presence of a nucleophile. Effect on adenosinetriphosphatase activities.
    Lacombe G; Van Thiem N; Swynghedauw B
    Biochemistry; 1981 Jun; 20(12):3648-53. PubMed ID: 6114744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenylglyoxal reveals phosphorylation-dependent difference in the conformation of Acanthamoeba myosin II active site.
    Redowicz MJ
    Arch Biochem Biophys; 2000 Dec; 384(2):413-7. PubMed ID: 11368332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
    Franks DJ; Tunnicliff G; Ngo TT
    Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal.
    Yamamoto H; Kawakita M
    Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical modification of arginine residues in the lactose repressor.
    Whitson PA; Matthews KS
    Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical modification of a functional arginyl residue (Arg 292) of mitochondrial aspartate aminotransferase. Identification as the binding site for the distal carboxylate group of the substrate.
    Sandmeier E; Christen P
    J Biol Chem; 1982 Jun; 257(12):6745-50. PubMed ID: 7085600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-serine binds to arginine-148 of the beta 2 subunit of Escherichia coli tryptophan synthase.
    Tanizawa K; Miles EW
    Biochemistry; 1983 Jul; 22(15):3594-603. PubMed ID: 6412746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue.
    Akeroyd R; Lange LG; Westerman J; Wirtz KW
    Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional arginine residues and carboxyl groups in the adenosine triphosphatase of the thermophilic bacterium PS-3.
    Arana JL; Yoshida M; Kagawa Y; Vallejos RH
    Biochim Biophys Acta; 1980 Nov; 593(1):11-6. PubMed ID: 6448637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by phenylglyoxal. Evidence for essential arginine residues.
    Rider MH; Hue L
    Eur J Biochem; 1992 Aug; 207(3):967-72. PubMed ID: 1323462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.