These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 159307)

  • 41. Arginine residues at the active site of avian liver phosphoenolpyruvate carboxykinase.
    Cheng KC; Nowak T
    J Biol Chem; 1989 Feb; 264(6):3317-24. PubMed ID: 2536743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Argininosuccinate synthetase: essential role of cysteine and arginine residues in relation to structure and mechanism of ATP activation.
    Kumar S; Lennane J; Ratner S
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6745-9. PubMed ID: 3863125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase.
    Bohren KM; von Wartburg JP; Wermuth B
    Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of arginine residues in the activation of calmodulin-dependent 3',5'-cyclic-nucleotide phosphodiesterase.
    Nibhanupudy N; Jones F; Rhoads AR
    Biochemistry; 1988 Mar; 27(6):2212-7. PubMed ID: 2837286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase.
    Boivin D; Lin W; Béliveau R
    Biochem Cell Biol; 1997; 75(1):63-9. PubMed ID: 9192075
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum.
    Shanmugasundaram T; Kumar GK; Shenoy BC; Wood HG
    Biochemistry; 1989 Aug; 28(17):7112-6. PubMed ID: 2819052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reaction of cardiac myosin with a purine disulfide analog of adenosine triphosphate. I. Kinetics of inactivation and binding of adenylyl imidodiphosphate.
    Greene LE; Yount RG
    J Biol Chem; 1977 Mar; 252(5):1673-80. PubMed ID: 138683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S; Bhaduri A
    J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modification of arginine residues in porcine pancreatic phospholipase A2.
    Fleer EA; Puijk WC; Slotboom AJ; de Haas GH
    Eur J Biochem; 1981 May; 116(2):277-84. PubMed ID: 7250128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of liver prenyl transferase and its inactivation by phenylglyoxal.
    Barnard GF; Popják G
    Biochim Biophys Acta; 1980 Feb; 617(2):169-82. PubMed ID: 7357016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for an effect of phospholamban on the regulatory role of ATP in calcium uptake by the calcium pump of the cardiac sarcoplasmic reticulum.
    Lu YZ; Xu ZC; Kirchberger MA
    Biochemistry; 1993 Mar; 32(12):3105-11. PubMed ID: 8384487
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inactivation of Escherichia coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide.
    Mukherjee JJ; Dekker EE
    Arch Biochem Biophys; 1992 Nov; 299(1):147-53. PubMed ID: 1444446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Essential arginine residue in gramicidin S synthetase 1 of Bacillus brevis.
    Kanda M; Hori K; Kurotsu T; Yamada Y; Miura S; Saito Y
    J Biochem; 1982 Mar; 91(3):939-43. PubMed ID: 7076652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenylglyoxal inactivation of the mitochondrial adenosine triphosphatase from Trypanosoma cruzi.
    Cataldi de Flombaum MA; Stoppani AO
    Mol Biochem Parasitol; 1982 Jun; 5(6):371-9. PubMed ID: 6213857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme.
    Ray S; Sarkar D; Ray M
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efrapeptin prevents modification by phenylglyoxal of an essential arginyl residue in mitochondrial adenosine triphosphatase.
    Kohlbrenner WE; Cross RL
    J Biol Chem; 1978 Nov; 253(21):7609-11. PubMed ID: 151685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal.
    Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ
    Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inactivation of ribulosebisphosphate carboxylase by modification of arginyl residues with phenylglyoxal.
    Schloss JV; Norton IL; Stringer CD; Hartman FC
    Biochemistry; 1978 Dec; 17(26):5626-31. PubMed ID: 728421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of essential arginine residues in Gramicidin S synthetase 2 and isoleucyl tRNA synthetase.
    Kanda M; Hori K; Miura S; Yamada Y; Saito Y
    J Biochem; 1982 Dec; 92(6):1951-7. PubMed ID: 6761339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.